Material MattersTM

エネルギー貯蔵および効率化のための材料

Materials for Energy Storage and Efficiency

Energizing Innovation

リチウムイオン電池に用いられる、より安全な高性能電極、 固体電解質および界面反応

高性能リチウムイオン電池用 シリコン負極材料の進展

原子層堆積法によるリチウム イオン電池、燃料電池および 太陽電池用ナノ材料の作製

色素増感太陽電池用高効率 ナノスケール無機光吸収材料

SAJ1790

SIGMA-ALDRICH[®]

はじめに

2013 年第4号の Material Matters ™ではエネルギー貯蔵および効率 化のための材料を特集します。エネルギーは経済成長にとって不可欠 であり、産業革命以降、化石燃料が主要エネルギー源として経済と社 会の成長の原動力となってきました。しかし、世界的なエネルギー需 要は増加しており、化石燃料の供給に限りがあることや環境に及ぼす 長期的影響を考慮すれば、代替エネルギー源が「エネルギーミックス」 Meenakshi Hardi, Ph.D.

のより大きな部分を担う必要があることは明らかです。代替エネルギ

Aldrich Materials Science

一源は、太陽エネルギー、水素エネルギー、バイオ燃料、風力、水力および地熱エネルギー をはじめとする、再生可能かつ環境に優しいクリーンなエネルギーです。しかし、代替エネ ルギーが世界的なエネルギー供給の主要な位置を占めるためには、2つの重要な課題を解決 しなければなりません。第一に、少なくとも既存の化石燃料と競合する程度まで、エネルギ 一生産効率を向上させる必要があります。第二に、移動性を備え、風力や太陽エネルギーの ような電力源の断続性を補うことのできる軽量で高性能なエネルギー貯蔵デバイスが必要で す。

リチウムイオン電池は、高エネルギー密度で大きな貯蔵容量を有するため、近年最も有望な エネルギー貯蔵デバイスの1つとして期待されています。リチウムイオン電池は携帯用電子 デバイスに広く使われており、現在、ハイブリッド自動車や電気自動車への大規模な実用化 に重点を置いた多くの研究が行われています。しかし、こうした大規模輸送の用途では、電 極/電解液材料および他の電池構成部品の性能や安全性、コストが主なハードルとなってい ます。

最初の論文では、安全性や価格の面で期待される次世代の正極材料および固体電解質用材料 について、Yves Chabal、Kyeongjae Cho、Christopher Hinkle(米国)が論じます。また、 電池性能および安定性を向上させる新たな電極と電解質材料との界面反応の研究に、最先端 の化学分光法および第一原理計算がどのように利用されているかについても紹介します。

2番目の論文では、ハイブリッド車および電気自動車の分野での高いエネルギー需要を満 たすことのできる高性能リチウムイオン電池のための次世代負極材料について、Xuefeng Song と Lian Gao 教授(中国)が概説します。ここでは、グラファイト負極の有望な代替 材料として、シリコンが主に取り上げられています。シリコン負極の優れた点は、低コスト や低毒性のみならず、高い理論容量と比較的低い作動電位などです。また、Si 負極をリチウ ムイオン電池に用いた場合によく見られる充放電サイクル中の体積変化の問題について、実 現性の高い対策をいくつか紹介します。

3番目の論文では、ナノ材料の利用によってどのようにデバイス性能が改善され、代替エネ ルギー技術の大規模な実用化が実現するかを Kessels 教授(オランダ)が述べます。ナノ材 料からデバイスを構築する際、大規模な実用化においてナノ材料の調製、修飾、機能化およ び安定化の面で特に多くの課題が生じます。本レビューでは、実例と共に、原子層堆積(ALD: atomic layer deposition)について取り上げ、様々なエネルギー用途(例えばリチウムイオ ン電池、燃料電池および太陽電池)に向けた薄膜やナノ構造材料などの高性能ナノ材料を作 製するための方法を解説します。

最後に、色素増感太陽電池の効率・性能を向上させるための、ナノスケール無機光吸収物質 および増感剤の使用における最近の進展を Nam-Gyu Park 教授(韓国)が概説します。金 属カルコゲニドおよび有機金属ハロゲン化ペロブスカイトのような無機増感材料は、低コス トで高性能な太陽電池を作製するのに有望な手法として注目されています。加えて、太陽電 池の効率をさらに向上させる有望な増感剤である量子ドットについても概説します。高い吸 光係数、調整可能なバンドギャップ、可視から赤外領域までの光を吸収する特性、およびマ ルチエキシトン生成(MEG: multi exciton generation)の可能性を取り上げます。

表紙について

代替エネルギーをはじめ、エネルギー変換、貯蔵ならびにエネルギー効率化技術の向上は、 将来のエネルギー確保のために必要不可欠です。表紙の図は、太陽電池やその他各種電池な ど、世界的なエネルギー需要を満たすためのエネルギー変換および貯蔵デバイスの例を表し ています。

Material Matters

Vol. 8, No. 4

エネルギー貯蔵および効率化のための 材料

ご注文:

最寄の試薬代理店にご注文ください。代理店 がご不明の場合は、弊社カスタマーサービス sialjpcs@sial.com へお問合せください。

お問合せ:

価格、納期については、弊社カスタマーサ ービスまでお問合せください。日本語 Web サイト www.siamaaldrich.com/iapan でも、各製品の価格や国内在庫の有無など をご確認いただけます。製品に関する技術 的なお問い合わせは、テクニカルサポート sialjpts@sial.com へお問合せください。

本カタログに掲載の製品及び情報は2014年 9月現在の内容であり、収載の品目、製品情 報等は予告なく変更される場合がございま す。予めご了承ください。

モバイル

QR コードを読み取ると、Material Matters バックナンバーの PDF をご覧いただけます。

or visit aldrich.com/mscatalog-jp

目次

Articles

リチウムイオン電池に用いられる、より安全な高性能電極、 固体電解質および界面反応4
高性能リチウムイオン電池用 シリコン負極材料の進展10
原子層堆積法によるリチウムイオン電池、 燃料電池および太陽電池用ナノ材料の作製15
色素増感太陽電池用高効率ナノスケール 無機光吸収材料23
Featured Products
電極シート・電解質溶液8 Ready-to-use electrode and electrolyte components for lithium-ion batteries
電極·電解質材料
溶媒および添加剤
シリコン・シリカナノ材料
グラフェン・酸化グラフェン14 A list of graphene and graphene oxide for lithum-ion battery anodes
CVD/ALD用前駆体材料
気相成長薄膜作製用・ゾルゲル法用前駆体
スパッタリングターゲット
薄膜作製用基板
コア型量子ドット
コアシェル型量子ドット
合金型量子ドット
ハロゲン化鉛系材料用前駆体27 A list of high purity lead starting materials
酸化チタンナノ材料

Your Materials Matter

Buy C Mehon

Bryce P. Nelson, Ph.D. Aldrich Materials Science Initiative Lead

「こんな化合物を探している」、「こんな製品があれば便利」といったお問い合わせやご要望はございませんか?皆様からの新製品のご提案をお待ちしております。*sialjpts@sial.com*までお気軽にお問い合わせください。

EMPA (Swiss Federal Laboratories for Materials Science and Technology) の Anke Weidenkaff 博士から、熱電材料研究用高 純度カルシウムコバルト酸化物 (Aldrich 製品番号:791032)の 製品化のご提案をいただきました¹。Ca₃Co₄O₉ (CCO)は、他の 多くの酸化物と同様に、その低コスト、無毒性、軽量、耐熱性、 化学的安定性、および高温での耐酸化性の点から、現在あらゆる 熱電材料の中で最も大きな期待が寄せられている物質です²。CCO は、酸化物の中で最も高い熱電性能指数(ZT)を有するミスフィ ット層状酸化物のグループの1つです。CCOの熱起電力は、異種 元素のドーピングによって、さらに向上させることができます^{3,4}。

References

- (1) Karvonen, L; Tomeš, P, Weidenkaff, A.; Material Matters 2012, 2, 92.
- (2) Koumoto, K.; Terasaki, I.; Funahashi, R.; *MRS Bulletin* **2006**, *31(3)*, 206.
- Xu, G.; Funahashi, R.; Shikano, M.; Matsubara, I.; Zhou, Y.; Applied Physics Letters 2002, 80(20), 3760.
- (4) Tian, R.; Donelson, R.; Ling, C. D.; Blanchard, P. E. R.; Zhang, T.; Chu, D.; Tan, T. T.; Li, S.; J. Phys. Chem. C 2013, 117(26), 13382.

Calcium cobalt oxide

[12514-78-2] Ca₃Co₄O₉ FW: 499.96

▶ Powder, ≥99.9% trace metals basis

791032

Material Matters™

Coming to Your Mobile Device

iPad版(英語)もご利用ください。 aldrich.com/mm

25g

リチウムイオン電池に用いられる、より安全な高性能電極、 固体電解質および界面反応

Yves J. Chabal, Kyeongjae Cho, and Christopher L. Hinkle* (Roberto C. Longo, K. C. Santosh, Amandeep K. Sra, David E. Arreaga-Salas, and Katy Roodenko; not pictured) Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75082 USA *Email: chris.hinkle@utdallas.edu

はじめに

現在、リチウムイオン電池の分野では、炭素系化合物の排出削減、 エネルギー貯蔵容量の向上を目的とした応用開発に関する研究が 精力的に行われています^{1,2}。リチウムイオン電池は、高エネルギ 一密度で大容量のデバイス実現可能性を有することから、ハイブ リッド自動車や電気自動車、または太陽光や風力発電のエネルギ 一貯蔵への大規模な導入が検討されているきわめて有望なデバイ スです^{3,4}。リチウムイオン電池は化学エネルギーを貯蔵し、その エネルギーを高効率かつ無排気で電力として供給します 5。リチ ウムイオン電池は携帯用電子デバイスに広く使用されていますが、 電極材料と電解液の性能がまだ十分ではないために、より大規模 な用途への実用化は遅れています 1,5,6。

また、安全性もリチウムイオン電池技術の大きな懸念の一つであ り、「熱暴走」と呼ばれる事例が多く報告されているため、より高 い安定性を備えた最先端材料の研究が進められています。層状酸 化物(LiMO₂)のような典型的な正極材料は、充電反応の最後で 無視することのできない不安定性を示し、高温で分解します。市 販されているほとんどの電解液はリチウム塩の溶解した有機溶媒 ですが、正極からの酸素放出に対して極めて不安定です。これら 安全上の問題を解決するために、安全性の向上(短絡しても燃焼 しない)と幅広い使用時温度や動作温度における化学的安定性の 向上を目的に、新規代替材料に関する研究が活発に行われていま す ^{7,8}。

本稿では、次世代正極材料および固体電解質として期待されてい る材料グループを取り上げます。また、電池性能および安定性向 上において、界面反応が大きな障害の1つであり、化学分光法や 第一原理計算の必要性について紹介します。

ケイ酸塩を基盤とした正極材料

より安定かつ安全な正極材料の開発には、これまでオリビンリン 酸鉄(LiFePO4、Aldrich 製品番号:759546)を用いた研究が主 に行われており、1997年に正極材料として報告された化合物とし て知られています¹。オリビン構造は、毒性がなく、潜在的には 安価で、オキシアニオン基(PO4 四面体)が安定した骨格構造を 形成するために過酷な使用条件下でもきわめて高い安定性を示す、 などの理由から注目を集めています^{2,3}。さらに近年では、LiFePO4

粒子のナノ構造化および炭素コーティングにより、性能が著しく 向上し、商業的に利用可能なレベルに近いレート特性とサイクル 特性が実証されています³。しかし、低いエネルギー密度(平衡電 位はわずかに約3.4V)と比較的低いイオン伝導性および電子伝導 性から、高いエネルギー密度や電力密度が必要な用途(ハイブリ ッド自動車など)での使用という点で大きな問題となります¹。

安全かつ安価な正極材料としてのポリオキシアニオン化合物の潜 在的可能性を考慮すると、ケイ酸塩はリン酸塩の代替化合物の一 つと考えられます^{4,5}。Si-O 結合は、少なくとも他のポリオキシア ニオングループと同様に安定であり、中規模から大規模のエネル ギー用途に必要な熱安定性をもたらします。さらに、オルトケイ 酸塩に属する化合物である Li₂MSiO₄ (M = Fe、Mn または Ni な どの遷移金属)は、2つの連続的な酸化還元反応でLi2MSiO4あた り2つのLi原子の脱離が可能であり、現在の正極材料のほぼ2倍 の容量(330 mAh/q)の実現可能性を秘めています⁵。しかし、 この化学式あたり2つのLi原子の脱離には課題が多いため、まだ 実験的に実現されてはいません⁵。実際、Li₂FeSiO₄において2つ 目の電子の脱離が起こる際の高い電圧、これら中程度のバンドギ ャップを有する絶縁体のもつ低い電子伝導性、およびリン酸鉄に 匹敵する低いイオン伝導性の問題があります5。さらに重要な課題 は構造安定性にあり、この四面体構造を有する化合物には形成エ ネルギーの近い、いくつかの結晶多形が存在するために5、最初の 充放電サイクル後に相転移が報告されています。ケイ酸塩の潜在 的可能性を十分に引き出すには、これら欠点すべてに対処する必 要があります5。

層状酸化物およびオリビンリン酸塩の特性向上のために用いられ た方法。と同様に、上述した問題のいくつかを解決するために、 ケイ酸塩正極材料への異種遷移金属元素の導入が行われています。 図1は密度汎関数理論(DFT: density functional theory)を用 いた第一原理計算によって得られた理論上の電圧で、幾つかのケ イ酸塩および異なる遷移金属組成の結晶構造における、2電子の 酸化還元反応の電位を示しています。これらの計算結果から、ケ イ酸塩の材料設計で重要ないくつかの特徴が示唆されます。ま ず、作動電圧依存性について、遷移金属種の違いのほうが結晶多 形の違いよりも強い傾向が見られます。次に、第1の酸化還元 過程については、異種遷移金属の「ドーピング」濃度が高くなる につれて(例えば、Feo.75Mno.25からFeo.5Mno.5)電圧が増加し、 33%の化学量論比で遷移金属カチオンを3元素含んだ組成(Fe-Mn-Ni)の電圧は、この2元素組成の電圧範囲内の値を示しま す。さらに、最初の Li 脱離の電圧も予測どおり、外殻の d 電子数 の増加とともに上昇しています4。重要となる第2の酸化還元過 程については、第1の反応の傾向とは反対に、遷移金属のドーピ ング濃度やd電子数の増加につれて電圧は減少しています。電圧 の範囲は、第1の反応では 3.43 V(Li₂Mn_{0.25}Fe_{0.75}SiO₄、Pmn₂₁) から 4.34 V (Li₂Ni_{0.5}Fe_{0.5}SiO₄、Pmn2₁)、第 2 の反応では 5.3 V (Li2Mno.25Feo.75SiO4、Pmn21)から4.13V(Li2Mno.33Feo.33Nio.33SiO4、 P21/n) です。

図1. 様々なケイ酸塩結晶多形構造。ドープしたLi2TMSiO4からのLi脱離に関する酸化還元反応に由来する2つの電圧プラトー(平坦域)の値。

計算に用いたすべての多成分ケイ酸塩は負の形成エネルギーをも つことから、室温で熱力学的に安定であることを意味していま す。遷移金属カチオンを複数含む固溶体のもつ構造のゆがみが、 LiMSiO4 中間化合物(半脱リチウム化した化合物)の相対的な安 定性を減少させるために第1の反応の作動電圧が上昇し、一方で 第2の反応(完全な脱リチウム化反応となる二つ目の電子の酸化 還元過程に対応)の電圧は低下します。これら電圧は、従来のリ チウムイオン電池にて達成可能な範囲にあります。ドーピングに よる Mn および Ni 添加により、Li 脱離の間に見られるカチオン性 静電反発は減少しますが、これは各結晶多形が、純粋な鉄ケイ酸 塩の2電子酸化還元過程に対してより安定であることを示唆して います。この安定性により、第1と第2のLi 脱離過程の間の電圧 ステップが減少するため、これら化合物のレート容量特性が向上 します。さらに、Niの含有によりケイ酸塩のバンドギャップが減 少し、電子伝導性が増加します。一方、我々の計算では、Fe に関 連する、局在化した非混成の d- 状態の存在が示されており、ポ ーラロン機構によって電子伝導性をさらに向上できる可能性があ ります。これらすべての知見は、多成分四面体ケイ酸塩の使用に よって、正極材料の性能が改善する可能性があることを示してい ます。しかしながら、脱リチウム化による相転移の問題は未解決 のままです。

複数の実験がすでに実施され、Li₂Fe_{0.5}Mn_{0.5}SiO₄ 固溶体が有望と 考えられています。より高い Mn 含有量 (Li₂Fe_{0.1}Mn_{0.9}SiO₄) では、 中間組成 (半脱リチウム化された) 段階の化合物において、Mn³⁺ イオンを有する安定かつ再現性の高い相が生成します⁷。なお、 Li₂Fe_{0.5}Mn_{0.5}SiO₄ では 214 mAh g⁻¹ の容量が報告されていますが、 充放電サイクルによって著しく減少します⁸。また、異なる化学量 論比の材料 (Li₂Fe_{0.8}Mn_{0.2}SiO₄) で良好な可逆性が示されましたが、 単に Fe³⁺ への酸化によるものであり、4 価の Fe または Mn によ るものではありませんでした。つまり、1 電子以上の交換が行わ れていないことを示唆しています⁵。

無機固体電解質

リチウムイオン電池(ペースメーカーのような医療デバイスの電 池を含む)向け固体電解質の商業利用に関心が寄せられているの は、現在の液体有機電解質に比べて電気的、化学的および機械的 安定性が高いためです。固体電解質は、衝撃や振動に強いために 安全性および信頼性の面でより適しており、自己放電や熱暴走が 見られず、より確実な充放電が可能で、従来の液体電解質に比べ て小型化することができます ^{9,10}。30 年ほど前から固体電解質材 料は研究され、電解質候補となる多くの材料が開発されています (図 2)¹¹⁻¹⁴。例えば、リチウムランタンチタン酸塩(LLTO)、ガ ーネット型ジルコン酸塩 (LLZO)、Li₂S -P₂S₅ 系ガラスおよびリン 酸リチウムオキシナイトライド(LiPON)⁸⁻¹³は、薄膜電池の固 体電解質として商業的に用いられています⁸⁻¹¹。しかし、現在利 用可能な固体電解質はイオン伝導性が非常に低いため、実用化が かなり制限されています。LiPON のイオン伝導性は 10⁻⁶ S cm⁻¹、 LLTO およびリチウムチオリン酸塩は約 10⁻³ S cm⁻¹ で、有機液体 電解質(10⁻²S cm⁻¹)と比べて非常に低い値です。正極材料の場 合と同様に、固体電解質に多価イオンを用いると電荷移動度を高 めることが容易になります。しかし、結晶格子とこれら多価イオ ンとの強い静電相互作用によってイオン移動のエネルギー障壁が 高まるため、イオン伝導性は減少します。加えて、イオンの移動 度とイオン半径には強い相関があるため、固体電解質の設計には、 格子内の移動可能な経路の大きさに見合ったイオン種のサイズを 検討することが必要です。

図2. 各種固体電解質の結晶構造。A) ガーネット型立方晶 LirLa₃Zr₂O₁₂ 超格子。青、紫、緑および赤い球は、それぞれ Li、Zr、La および O 原子 を表しています。B) γ -Li₃PO4 超格子。Li 原子は緑の球、PO4 グループ は紫の四面体(赤い球は酸素)で示しました。C) リチウムランタンチタ ン酸塩(LLTO、Lio₂₅Lao₅₈₃Tio₁₆₇O₃)。青、緑、水色および赤い球は、それ ぞれ Li、La、Ti および O 原子を表しています。参考文献 14 から引用。

固体電解質において、イオン輸送は原子の無秩序性(空孔や格子 間イオンなど)から生じます。第一原理計算を用いた LiPON 固体 電解質およびその電極界面に関する我々の研究からは、Li 欠陥伝 導は格子間 Liを由来とし、電極の合金化により調整可能なフェル ミ準位の位置に依存することが示されています¹⁴。すなわち、フ ェルミ準位を変えることにより、欠陥形成エネルギーを制御する ことができます。例えば、Erが価電子帯の頂上(最大値)から約 3 eV 以内にある場合、その低い形成エネルギーにより Li⁺格子間 欠陥が容易に生じます(図3)。

6

図3. バルクLi₃PO4のバンドギャップに対する、フェルミ準位とLi⁺ 欠陥 形成エネルギーとの関係

反対に、LLTOにおけるイオン移動はLi空孔を由来とし、Liイオ ンの部分的占有がこれら化合物群における高いイオン伝導性に寄 与します。ペロブスカイト(ABO₃)構造(A=Li、Laまたは空孔 B=Ti)を有するLLTOは、室温でより高いリチウムイオン伝導性(約 10⁻³Scm⁻¹)を有するため、広く研究されています¹²。高いイオ ン伝導性は、Li欠陥形成エネルギーおよび隣接したAサイト空孔 へのホッピングの際のLi移動障壁が共に低い点と関係しています。 同様の伝導メカニズムが、ガーネット型固体電解質において予測 されています。LLTOのもう一つの利点は、正極材料の保護コーテ ィングとしても使用でき、充放電サイクル後の安定性が向上する 点です。また、コンポジット電極におけるLi⁺拡散のインピーダ ンス低下にも有用です¹⁵。しかし、LLTO 固体電解質はLi 金属と 接した場合に不安定であることが明らかとなっており、一方のガ ーネット型固体電解質は、Li 金属に対する電気化学的な安定性が 確認されています。

電極/電解液界面の分光学的分析¹⁹

ケイ酸塩正極、固体電解質および Si 負極といった新規材料の実用 化に伴う、これら新しい構成材料すべてに共通する重要な問題は、 界面の適合性および安定性です¹⁶。実際、電解液と活物質の間、 もしくはその他材料との間の界面反応は、安全性および性能に極 めて大きな影響を及ぼすため、詳細な研究が求められています。 ここでは、水素化アモルファス Si 負極表面の固体電解質界面(SEI: solid-electrolyte interphase)の形成を伴う、電極/電解液界面 で起きる化学反応および形態変化を理解するために、分光学的分 析がどのように役立つのかを説明します(電解液には、1 M LiPF6 エチレンカーボネート / ジエチルカーボネート [EC/DEC] 1:1 混合溶液を使用しました)。

SEIは、電解液の分解を通して電極表面に不溶性の固体被膜として 形成され、リチウムイオン電池の発電サイクルおよびサイクル寿 命に関わる重要な要素です。再現性の高いリチウム化反応を維持 するには、SEIの形成について十分に理解し、電極の不活性化、安 定性およびインピーダンスを制御する必要があります。そのため、 SEI 膜に含まれる化学種の組成および形成メカニズムを特定するこ とが重要となります。

いくつかの研究グループが、FTIR、ラマンおよび XPS などの表面 分析技術を用い、シリコン負極表面における SEI 形成について報 告しています¹⁷⁻²⁰。これら研究に用いた負極は、他の電極構成材 料 (バインダーや導電剤)が SEI 形成に及ぼす影響を排除するよ うに設計されています。また、いくつかのグループは、未ドープ 結晶シリコン(001) ウエハ、Si ナノ粒子の電気泳動堆積、および 水素化アモルファスSi (a - Si:H) 負極などの、バインダーを含ま ない電極の作製について報告しています^{19,20}。特に a - Si:H 負極を 使用する利点は、Li との最初の反応でアモルファス化が進行する 間、結晶 Si の場合生じるストレスを受けない点にあります。測定 対象の SEI 層は、サイクリックボルタンメトリー(C-V)測定中に、 Si 電極表面に形成されます。サイクリックボルタンメトリーでは、 リチウム化/脱リチウム化の速度論的知見のみならず(図4A)、 電解液および電極の電気化学的安定性や、副反応に関する有用な 情報が得られます。開放電圧(OCP: open-circuit potential) か ら 0.0 V へと掃引した際、最初のリチウム化反応を示す特徴的な ピークが 1.3 ~ 1.5 V 付近で観察され(図4A)、このピークは以降 のサイクルでは見られません。これは、電極表面における SEI 形 成の開始に相当します。

最初のリチウム化反応の後の、XPS 表面分析による Si 2p 領域の 結果(図4B)から、Si-Si 結合の切断と、Li および Fのa-Si:Hマ トリックス内への侵入が始まっていることがわかります。最初の 脱リチウム化によって、Si-Li および Si-Fのピーク強度は顕著に 減少しますが、これは負極からのLi 脱離と整合しています。2回 目のリチウム化で Si-Li ピークは広がり、その強度は著しく増加 していることから、最初のリチウム化と比較して電極におけるLi の取り込みがより進んでいることを示しています。このように、 XPS 分析とサイクリックボルタンメトリー測定とを組み合わせる ことにより、主に最初のリチウム化サイクルで、電極自体に取り 込まれる少量のLi により SEI 層が形成される一方、2回目のリチ ウム化反応では a -Si:H 負極への顕著なLi 挿入が起きることが示 されました。ラマンデータ(図4C)は、最初のサイクルの間は a -Si:H ネットワークがほぼが維持され、以降のサイクルで、Si-Si 結合の切断が大きく発生していることを示唆しています。

図4. A) 最初のリチウム化と脱リチウム化、および2回目のリチウム 化サイクルのサイクリックボルタンメトリー曲線。B) 1回目および2回 目のC-Vサイクルのリチウム化-脱リチウム化反応における電極のSi 2p XPS スペクトル。C) 未処理および各サイクル後の負極のラマンデー タ。2回目のリチウム化サイクルで、高濃度のLi およびF挿入による、a -Si:H に典型的な近距離の結合切断が見られます。D) FTIR データからは、 Li-F、P-F および溶媒分解物が見られます(J: OCP to 0.0 V, H: 0.4 V, E:1.0 V, D: 1.2 V)。参考文献 19 から引用。Copyright 2013 American Chemical Society。

最初のリチウム化サイクルにおける SEI 層の形成は、サイクリッ クボルタンメトリー測定を応用することで追跡することができま す。最初のリチウム化反応において、OCPから電位を 0.2 V の間 隔で増やしていき、各掃引ごとに負極をセルから引き抜き、表面 分析を行いました。99.3 eV の結合エネルギーにおける Si 2p ピー クの強度は、電解液分解および SEI 被膜形成に起因する減衰によ り減少します。完全なリチウム化で Li および F の Si マトリクスへ の挿入が起こり、Si 2p ピークは大きく広がります。

さらに、電解液分解による界面での化学反応についてのデータが、 F および Liの 1s 内殻準位の XPS スペクトルによって得られてい ます (図 5A ~ 5B)。1.8 V のバイアスを印加したサンプルで見ら れる、687.8 eVの大きなピークは、電解液中の LiPF6 の存在によ るものであり、685.6 eVの比較的小さいピークは、LiPF₆の主な 分解生成物として知られる LiF の生成によるものです。よりリチ ウム化が進むにつれて、LiPF。ピーク強度の減少とそれに伴う LiF ピーク強度の増加が見られました(図5C)。

図 5. A) F1s XPS スペクトル。バイアスの印加によって、LiPF。(687.8 eV)からLiF(685.6 eV)への分解が見られ、サンプルH(OCPから0.4 V)のスロープの変化は、F-Si-Linネットワークの形成を示しています。B) Li 1s XPS スペクトルおよび C) P 2p XPS スペクトル。いずれからも LiPF6 から LiF へ分解が進んでいることがわかります。参考文献 19 から引用。 Copyright 2013 American Chemical Society。

表面分析データを総合すると、SEI 層の化学的形成のメカニズム は以下のようになります。最初の充電サイクルの1.8Vにおいて、 電解質 LiPF₆ および溶媒が電極表面上で分解し始めます。1.8~ 0.6 Vの間では、電解質および溶媒の分解は、電極表面上での SEI 被膜の形成に寄与します。最初のリチウム化で形成される SEI 層は、 LiFを主要な化学種とし、その他に低濃度の電解質 LiPF6、電解質 分解物の LixPFy および PFy を含んでいます。最初のリチウム化反 応の後期まで、SiはLiおよびFイオンと相互作用を起こしません。 0.4 V 未満のバイアスの印加で、SEI 層を通過した Li および F の拡 散により a -Si:H 負極のリチウム化が開始し、Si -Li、Si -F、および F-Si-Lin ネットワークが形成されます。電解液副生成物と Si が反 応し始めると、(高容量につながる Li-Si ばかりでなく)同時に F と Li が反応します。これら XPS の結果は、最初のリチウム化反応 において主に Li -F および P -F 結合を含む化合物の存在を示す IR スペクトル(図4D)により裏づけられます。また、高酸化状態の Siの存在を示す XPS データによれば、Si-F 結合に関連したスペク トル領域にも吸収が見られます。

2回目のリチウム化サイクルの間、Li により Si -Si 結合の大きな切 断が起こり、高濃度のLi_xSi が形成されます。加えて、2回目のリ チウム化サイクルの後、IR スペクトル(図 4D)には、ROCO₂Li やLi₂CO₃、R-CO₂-Mⁿ⁺(R=アルキル基、M=Si/Li)などのカル ボン酸塩に由来する 1,350 ~ 1,600 cm⁻¹ における吸収が見られ ます。これらの化学種は、炭酸塩系溶媒の典型的な分解生成物に 相当します。IR 分析からは、SEI 層は、アルキル基を有する有機 化合物を中心に、カルボン酸金属塩、Li-FやP-F含有化合物など の無機化合物から構成されることが示唆されます。

これらの研究は、界面化学の複雑さと、電極開発のあらゆる面で 研究を進めていくためには分光学的な特性評価が必要であること を示しています。この特性評価を第一原理計算や綿密な材料合成 と結びつけることで、新規で安全性の高い、高性能電極/電解液 の設計・開発、ならびにこれら新材料間の反応制御が可能となり ます。

謝辞

本稿は、著者らの成果をもとに執筆されました。米国エネルギー 省の基礎エネルギー科学局 Division of Materials Sciences and Engineering の助成金(DE-SC001951 for KR) およびエネルギー 効率・再生可能エネルギー局の助成金(DE-EE0004186 for CH) からの支援に感謝いたします。また DEA は、メキシコ国家科学 技術審議会(CONACYT: the Mexican Council of Science and Technology) の Graduate scholarship program for studies abroad による支援に感謝いたします。DFT 計算は、テキサス先 端計算センター(TACC: Texas Advanced Computing Center) で行われました。

References

- Padhi A. K., Nanjundaswamy K. S. and Goodenough J. B., J. Electrochem. Soc., 1997, (1) 144, 1188
- Delacourt C., Poizot P., Morcrette M., Tarascon, J. M., Masquelier C., Chem. Mater., 2004, 16, 93.
- (3) Kang B., Ceder G., Nature, 2009, 458, 190.
- Larsson P., Ahuja R., Nytén A. Thomas J. O., Electrochem. Commun., 2006, 8, 797. (4)
- Islam M. S., Dominko R., Masquelier C., Sirisopanaporn C., Armstrong A. R., Bruce P. G., (5) J. Mater. Chem., 2011, 27, 9811
- (6) Gwon H., Seo D. H., Kim S. W., Kim J., Kang K., Adv. Funct. Mater., 2009, 19, 3285. Kokali A., Dominko R., Mali G., Meden A., Gaberscek M., Jamnik J., Chem. Mater., 2007. (7) 19, 3633
- Gong Z. L., Li Y. X., Yang Y., Electrochem. and Sol. State Lett., 2006, 9, A542. (8)
- (9) Patil V., Shin D. W., Choi J. W., Paik D. S., Yoon S. J., Material Research Bulletin, 2008, 43.1913.
- (10) Park M., Zhang X., Chung M., Less G. B., Sastry A. M., J. Power Sources, 2010, 195, 7904. (11) Bates J. B., Dudney N.J., Neudecker B., Ueda A., Evans C. D., Sol. State Ionics, 2000,
- 135.33. (12) Salkus T., Kazakevicius E., Kezionis A., Orliukas A. F., Badot J. C., Bohnke O., Solid State
- lonics, 2011, 188, 69.
- (13) Murugan R., Thangarudai V., Weppner W., Angew. Chem., Int. Ed. 2007, 46, 7778 Santosh K.C., Xiong K., Longo R. C., Cho K., J. of Power Sources, 2013, 244, 136 (14)
- (15) Qian D., Xu B., Cho H. -M., Hatsukade T., Carroll K. J., Meng Y. S., Chem. Mater. 2012, 24.2744
- (16) Chan C.K., Peng H., Liu G., McIlwrath K., Zhang X.F., Huggins R.A., Cui Y., Nature Nanotechnology, 2008, 3, 31.
- (17) Philippe B., Dedryvère R., Gorgoi M., Rensmo H., Gonbeau D., Edström K., Chem. Mater, 2013, 25, 394. (18) Nie M., Abraham D. P., Chen Y., Bose A., Lucht B. L., J. Phys. Chem. C, 2013, 117 (26),
- 13403.
- (19) Arreaga-Salas D. E., Sra A. K., Roodenko K., Chabal Y. J., Hinkle C. L., J. Phys. Chem. C, 2012 116 (16) 9072
- (20) Schroder K. W., Celio H., Webb L. J., Stevenson K. J., J. Phys. Chem. C, 2012, 116 (37). 19737.

リチウムイオン電池材料

電極シート

リチウムイオン電池材料の最新情報は、aldrich.com/alternative-jp をご覧ください。

Sheet size 5×10 in./80% active material on aluminum electrode substrate.

Product Name	Composition	Nominal Voltage (V)	Capacity (minimum)	Capacity (nominal)	Purity	Prod. No.
Lithium manganese nickel oxide, LMNO	Li ₂ Mn ₃ NiO ₈	4.7 (Li/Li+)	115 mAh/g	125 mAh/g	≥98%	765198-1EA
Lithium manganese oxide, LMO	LiMn ₂ O ₄	4.7 (Li/Li+)	110 mAh/g	120 mAh/g	≥98%	765201-1EA
Lithium nickel cobalt aluminium oxide, NCA	LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂	3.7 (Li/Li+)	150 mAh/g	180 mAh/g	≥98%	765171-1EA
Lithium nickel manganese cobalt oxide, NMC	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂	3.5 (Li/Li+)	210 mAh/g	250 mAh/g	≥99%	765163-1EA
Lithium titanate, LTO	Li ₄ Ti ₅ O ₁₂	1.5 (Li/Li+)	150 mAh/g	160 mAh/g	≥98%	765155-1EA

電解質溶液

Lithium Hexafluorophosphate Solutions, Battery Grade: $H_2O < 15$ ppm; HF < 50 ppm; APHA < 50

Product Name	Specifications	Prod. No.
1.0 M LiPF ₆ in EC/DMC=50/50 (v/v)	in ethylene carbonate and dimethyl carbonate	746711-100ML
1.0 M LiPF ₆ in EC/EMC=50/50 (v/v)	in ethylene carbonate and ethyl methyl carbonate	746738-100ML
1.0 M LiPF ₆ in EC/DEC=50/50 (v/v)	in ethylene carbonate and diethyl carbonate	746746-100ML
1.0 M LiPF ₆ in DMC	in dimethyl carbonate	746754-100ML
1.0 M LiPF ₆ in EMC	in ethyl methyl carbonate	746762-100ML
1.0 M LiPF ₆ in DEC	in diethyl carbonate	746770-100ML
1.0 M LiPF ₆ in PC	in propylene carbonate	746789-100ML

カソード材料

Product Name	Composition	Description	Particle size	Prod. No.
Lithium iron(II) phosphate, LFP	LiFePO ₄	powder, >97% (XRF)	<5 µm (BET)	759546-5G
Lithium cobalt phosphate, LCP	LiCoPO ₄	powder, 99%	-	725145-25G
Lithium cobalt phosphate, LCP	LiCoPO ₄	powder, 99.9% trace metals basis	-	777110-25G
Lithium nickel manganese cobalt oxide, NMC	LiNi _{0.33} Mn _{0.33} Co _{0.33} O ₂	powder, >98%	<0.5 µm	761001-10G
Lithium nickel cobalt aluminium oxide, NCA	LiNi _{0.8} Co _{0.15} Al _{0.05} O ₂	powder, >98%	<0.5 µm	760994-10G
Lithium manganese nickel oxide, LMNO	Li ₂ Mn ₃ NiO ₈	powder, >99%	<0.5 µm (BET)	725110-25G
Lithium nickel cobalt oxide, LNCO	LiNi _{0.8} Co _{0.2} O ₂	powder, >98%	<0.5 µm	760986-10G
Lithium manganese oxide, LMO	LiMn ₂ O ₄	powder, >99%	<0.5 µm (BET)	725129-25G
Lithium manganese(III,IV) oxide, LMO	LiMn ₂ O ₄	-	<5 µm	482277-25G
Lithium manganese dioxide	LiMnO ₂	powder, >99% trace metals basis	<1 µm	725137-25G
Lithium nickel dioxide, LNO	LiNiO ₂	powder, ≥98% trace metals basis	<3 µm (BET)	757365-10G
Lithium trivanadate, LTV	LiV ₃ O ₈	powder, 98%	-	771511-5G
Lithium iron(III) oxide	LiFeO ₂	powder, 95%	<1 µm	442712-100G-A
Lithium cobalt(III) oxide	LiCoO ₂	powder, 99.8% trace metals basis	-	442704-100G-A
Lithium molybdate	Li ₂ MoO ₄	powder or crystals, 99.9% trace metals basis	-	400904-250G
Manganese nickel carbonate	Mn _{0.75} Ni _{0.25} CO ₃	powder, 99.99% trace metals basis (excluding Mg)	-	763608-25G

アノード材料

2 2 1 AUA-1				
Product Name	Description	Purity	Form	Prod. No.
Lithium titanate, spinel, LTO nanopowder	particle size <200 nm (BET)	>99%	nanopowder	702277-25G
Lithium titanate, LTO	-325 mesh	-	powder	400939-100G
Tin(IV) oxide	particle size <100 nm (BET)	-	nanopowder	549657-5G 549657-25G
Lithium	particle size 4-10 mesh	99%, metals basis	granular	444456-10G 444456-50G
	thickness \times W 1.5 \times 100 mm	99.9% trace metals basis	ribbon	266000-25G 266000-100G
	thickness \times W 0.75 \times 45 mm	99.9% trace metals basis	ribbon	265993-25G 265993-100G
	thickness \times W 0.38 \times 23 mm	99.9% trace metals basis	ribbon	265985-25G 265985-100G
	diam. 3.2 mm	≥98%	wire	278327-25G 278327-100G
Carbon, mesoporous	particle size <500 nm (DLS)	>99.95% trace metals basis	nanopowder	699624-5G 699624-25G
Carbon	2 - 12 µm	99.95% trace metals basis	glassy, spherical powder	484164-10G 484164-50G
Silicon	-	99.95% trace metals basis	pieces	343250-50G 343250-500G
	–60 mesh	99.999% trace metals basis	powder	267414-25G
	–325 mesh	99% trace metals basis	powder	215619-50G 215619-250G 215619-1KG
	particle size <100 nm (TEM)	≥98% trace metals basis	nanopowder	633097-10G 633097-25G

8

電解質材料

Product Name	Composition	Purity	Form	Prod. No.
Lithium aluminum titanium phosphate, LATP	Li13Al03Ti17(PO4)3	≥99.9% trace metals basis	powder	790516-10G
Lithium difluoro(oxalato)borate, LIF2OB; LIODFB; LIFOB	LiBC ₂ O ₄ F ₂	-	powder	774138-25G
Lithium bis(oxalato)borate, LiBOB	LiB(C ₂ O ₄) ₂	-	powder or crystals	757136-25G
Lithium hexafluorophosphate	LiPF ₆	≥99.99% trace metals basis	powder	450227-5G 450227-25G
Lithium trifluoromethanesulfonate, LiTf	CF ₃ SO ₃ Li	99.995% trace metals basis	powder	481548-5G 481548-25G
Lithium tetrachlorogallate	LiGaCl ₄	99.99% trace metals basis	beads	736317-5G
Lithium tetrachloroaluminate	LiAICI ₄	99.99% trace metals basis	beads	451142-5G
Lithium tetrafluoroborate	LiBF ₄	99.99% trace metals basis	powder	451622-5G 451622-25G
Lithium perchlorate	LiClO ₄	99.99% trace metals basis	powder and chunks	634565-10G 634565-100G
Lithium hexafluoroarsenate(V)	LiAsF ₆	98%	powder	308315-10G
Lithium phosphate monobasic	LiH ₂ PO ₄	99%	powder or crystals	442682-500G-A

溶媒および添加剤

Product Name	Structure	Purity	Prod. No.
Allyl methyl sulfone, MAS	H ₂ C ,	96%	718203-5G
Diethyl sulfite, DES	Р н ₃ с [_] о ^{_S} _` о [_] сн ₃	98%	774278-25G
1,5,2,4-Dioxadithiane-2,2,4,4-tetraoxide		-	774286-10G
Ethylene sulfite, ES	⊂_o`s=o	≥99.0%	774251-25G
Ethyl methyl carbonate, EMC	H ₃ C ^O O ^O CCH ₃	99%	754935-50ML
Fluoroethylene carbonate, FEC		99%	757349-25G
3-(Methylsulfonyl)-1-propyne	H ₃ C −S 0 0 0 CH	95%	718319-5G
1,2-Propyleneglycol sulfite, PS	H ₃ C O S ₂ O	≥98%	774456-10G
Propylene sulfate		≥99%	774294-10G
1,3-Propylene sulfite, TMS; PS	0.35° 0	99.5%	774243-25G
Vinylene carbonate, VC	o Jo	99%	757144-25G

高性能リチウムイオン電池用シリコン負極材料の進展

Xuefeng Song,^{1*} Xiaobing Wang,² Zhuang Sun,¹ Peng Zhang,¹ and Lian Gao¹ ¹State Key Laboratory for Metallic Matrix Composite Materials, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China ²Baoshan Iron & Steel Co., Ltd. Tube, Pipe and Bar Business, Baoshan District, Shanghai, 201900, China ^{*}Email: songxfeng@sjtu.edu.cn

はじめに

リチウムイオン電池(LIB: lithium-ion battery)は、電気自動車 やハイブリッド自動車向けの需要が近年活発であることや、低価 格化により、充電式電池技術としてますます一般的なものになっ ています。最新の「IHS Isuppli Rechargeable Batteries Special Report 2011) によれば、世界的なリチウムイオン電池の売上 は、2010年の118億ドルから2020年には537億ドルに拡大す ると予測されています¹。しかし、典型的なリチウムイオン電池 用負極材料であるグラファイトは、その理論的な比容量が約370 mAh g⁻¹ と限られているため、最先端の電気自動車やハイブリ ッド自動車市場における高いエネルギー需要を満たしてはいませ ん²。そのため、過去10年以上にわたり、高い貯蔵容量、高い エネルギー密度、改善されたサイクル特性を有する数多くのリチ ウムイオン電池用負極材料が報告されています 3-7。いくつかの 負極材料の特性を表1にまとめました。これら最先端の負極材 料のなかで、Si はリチウムイオン電池用の代替材料として、主に 以下の理由から大きな注目を集めています。1)比容量が4,200 mAh g⁻¹、容積容量が 9,786 mAh cm⁻³ であり、LIB 負極材料と して最もよく知られていること、2)比較的低い作動電位(0.5V vs. Li/Li⁺)を有すること、3) Si 元素は天然に豊富に存在し、環境 に優しいことが挙げられます 8-10。

しかし、Si 負極の実用化にあたっては、次の3つの大きな課題 を解決しなければなりません。第一に、リチウムイオンのインタ ーカレーション(挿入)と脱離に伴って起きる大きな体積変化 (> 300%)によって分解が進むため、シリコン材料のサイクル寿 命が短いことです。第二に、合金化/脱合金化プロセスでの Si 負 極の機械的破砕によって、急激かつ不可逆的な容量減少および低 いクーロン効率が引き起こされることです。最後に、リチウムの 脱離によるナノ構造の収縮に伴って固体電解質界面(SEI: solid electrolyte interphase)が破損することです。そのため、シリコ ンの新しい表面が電解液に露出して SEI が形成され、SEI は充放電 を繰り返すごとに厚くなります(図1)^{11,12}。

図1. 充放電サイクル中に新たなシリコン表面上で起きる SEI 形成の概略図

ナノ構造シリコン負極材料

これら大きな体積変化に関する課題の解決のために、いくつかの 手法が開発されています。効果的な方法の一つに、活物質粒子の ナノサイズ化があります。ナノ粒子は大きなストレスに対して亀 裂を生じることなく適応可能であり、また、電子やイオンの輸送 距離が短縮されます。さらに、ナノ材料の高密度結晶粒界が、Li イオンの高速拡散を可能とし、かつ付加的な Li 貯蔵サイトとして も機能します¹³⁻¹⁶。Huang らは、構造的ストレスの解放に与える Si ナノ粒子のサイズ効果を in situ での透過型電子顕微鏡(TEM) によって確認し、粒径が <150 nm の場合、電気化学反応によっ て蓄積された歪みエネルギーは、Si ナノ粒子中の亀裂伝搬を引き 起こすには不十分であることを明らかにしました(図2)¹⁷。最 近では、Kim らが 380℃、高圧下で様々な界面活性物質を用いる ことにより、5、10、20 nm サイズの Si ナノ粒子を合成したこと を報告しています¹⁸。これらの材料を0~1.5Vの範囲で、0.2C レートで充放電を繰り返した場合、40回を超えるサイクルの間で 2,500 mAh g⁻¹の容量が得られ、容量維持率はそれぞれ 71、81、 67%でした。

図2. 充放電サイクル中のシリコンの安定性に与える粒径の影響

表1. 様々な負極材料の特性比較

Anode Materials	с	Li	Si	Sn	Sb	AI	Mg	$Li_4Ti_5O_{12}$	Bi
Lithiated phase	LiC ₆	Li	Li _{4.4} Si	Li _{4.4} Sn	Li₃Sb	LiAl	Li ₃ Mg	$\mathrm{Li}_{12}\mathrm{Ti}_5\mathrm{O}_{12}$	Li ₃ Bi
Theoretical specific capacity (mAh g^{-1})	372	3,862	4,200	994	660	993	3,350	175	385
Theoretical volume capacity (mAh cm ⁻³)	837	2,047	9,786	7,246	4,422	2,681	4,355	613	3,765
Volume change (%)	12	100	320	260	200	96	100	1	215
Potential vs. Li (~v)	0.05	0	0.4	0.6	0.9	0.3	0.1	1.6	0.8

さらに、Kim らは、強く相互接続した多孔質構造を有する、興味 深い 3D バルク Si 構造も報告しています¹⁹。この Si 構造は細孔の 壁の厚さが 40 nm であり、100 サイクル後も粉砕なく大きな歪 みに適応でき、1 C レート(2,000 mA g⁻¹)で 2,800 mAh g⁻¹を 超える充電容量を維持しました。スタンフォード大学の Cui グル ープは、シリコンナノワイヤとナノチューブを負極に用いた場合、 約 3,200 mAh g⁻¹(ナノワイヤ)と約 3,247 mAh g⁻¹(ナノチュ ーブ)という高い可逆容量を持ち、数十サイクルの間、高い放電 容量および安定性を示すことを報告しています^{20,21}。ナノワイヤ およびナノチューブを基盤にした電極は、サイクル中に生じる材 料膨張に適応できると同時に、集電体に直接成長させた際には電 流パスを直接形成することができます¹⁰。加えて、Si ナノチュー ブは電解液に接触する表面積が増加し、ナノチューブの内側およ び外側での Li イオンのインターカレーションが可能となります。

ナノ構造 Si 負極のこうした利点にもかかわらず、ナノ粒子には、 広い表面積、高い製造コスト、および取り扱いの難しさといった 欠点もあります²²。それでも、ナノ構造シリコンは、次世代リチ ウムイオン電池用シリコン負極材料の持つ課題を解決するための 最も有望な手法の1つと考えられています。

Si 系炭素複合負極材料

充放電中の体積変化の問題を解決するためのもう一つのアプロー チとして、複合材料の利用があります²³。マトリックス材料は顕 著な体積変化を起こさないため、シリコンの凝集または電気化学 的焼結が減少することで、シリコンの膨張を抑え、電極構造を維 持し、安定性を向上できる可能性があります¹⁰。

-つの手法としてシリコン系炭素複合材料があり、その利点として、電気伝導性の改善と炭素マトリックスの緩衝効果の向上が挙 げられます²⁴⁻²⁷。加えて、炭素添加剤には、優れたイオン伝導性 および Li 貯蔵能力という特長があります^{28,29}。しかし、Si 活物質 にコンフォーマルな炭素コーティングを行うと、充放電サイクル 中に亀裂が生じるため、Si が電解液に露出してさらなる SEIの堆 積が起こります。そのため、Si の大きな体積変動に適応できる炭 素コーティング手法が必要です。

図3. コア/シェル構造型のSiハイブリッドの概略図。内部の空隙が、リチウムの吸蔵によるシリコン体積膨張の影響を緩和し、Siコアの表面をSEIの堆積から保護します。

その一つに、図3に示すようなSiと炭素シェルとの間に大きな空隙を導入する方法があります³⁰。Liu らは、優れた容量(C/10 で 2,833 mAh g⁻¹)、サイクル寿命(1,000 サイクル後に容量維持率 74%)、およびクーロン効率(99.84%)を有するコア/シェル構造型 Si@Carbon(図4A)を報告しています³¹。Siナノ粒子を、最初に SiO2層、次にポリドーパミン(PDA: polydopamine)層でコーティングし炭化させることで、窒素ドープされた炭素被覆層が形成されます。その後、フッ化水素酸(HF)処理により SiO2層を選択的に除去し、コア/シェル型 Si@Void@C 構造が得られました。ごく最近、Li らは 100 サイクル(電流密度:1 A g⁻¹)の後、容量維持率 86%に相当する可逆容量 650 mAh g⁻¹の中空コア/シェル型ポーラス Si-C ナノ複合材料について報告しています³²。

そのユニークな構造の利点は、以下の2つの側面にあります。1) Siコアと炭素シェルとの間の空隙により、リチウム化の際にSiナ ノ粒子がシェルを壊すことなく膨張することが可能となります。2) 炭素シェルの電子伝導性およびイオン伝導性によってインターカ レーションの速度が向上し、さらに、Si表面への電解液の接触を 防ぎます。

もう一つの方法は、多孔質の Si-C 複合材料を作製することで す。Si-C 多孔性複合材料は容量が大きく(可逆容量:1,950 mAh g⁻¹)、サイクル寿命が長いことが Magasinski らにより報告 されています³³。多孔性 Si-C 構造の作製には、階層的ボトムアッ プ組織化手法が用いられました。この構造体は樹枝状の不規則な カーボンチャネルを有するために、粒子バルク内部へのLi イオン の迅速なアクセスが可能となるパスを含み、また、内部の多孔性 構造によって充放電中の Si の大きな体積変化に適応することがで きます。

また、グラフェンも、その優れた電気伝導性、高表面積(2,600 m² g⁻¹)、化学的安定性、および高い機械的強度により、体積 変化を抑えて電子伝導性を改善するために Si 負極に使用されて います³⁴⁻³⁸。Luo らは、「one-step aerosol-assisted capillary assembly technique」と呼ばれる手法で合成された、高い容量 (250 サイクル後に 940 mAh g⁻¹)および良好なサイクル安定性(容 量維持率:83%)を有する、潰れた形状のグラフェンで覆われた Si ナノ粒子のナノカプセルを報告しています³⁰。このつぶれたグ ラフェン層のひだやしわは、リチウム化の際、破砕を伴わずに Si の体積膨張に適応でき、絶縁性 SEI の過剰な堆積から Si ナノ粒子 を保護します。さらに最近では、Wenらが、Siをアミノプロピル トリメトキシシラン(APS、Aldrich 製品番号:281778) で処理 し、バインダーとしてカルボキシメチルセルロース(CMC)の代 わりにアルギン酸ナトリウムを用いることで、グラフェンでカプ セル化された Si 負極の電気化学的性能が向上することを報告して います。APSとアルギン酸ナトリウムの利用によって、グラフェ ンと結合し、カプセル化された Si グループと集電体との間の相互 作用の向上が見られました。このグラフェンカプセル化 Si ナノ粒 子は、0.1 C で 2,250 mAh g⁻¹、10 C で 1,000 mAh g⁻¹の容量を 示し、120 サイクル後でも初期容量の85%を維持しています。

3D グラフェン足場 (図 4B) に埋め込まれた Si ナノ粒子が Zhao らにより報告されています。その Si ナノ粒子は、約 3,200 mAh g⁻¹ (電流密度: 1A g⁻¹)の可逆容量を示し、150 サイクル の後で、理論容量の 83% を維持しました³⁹。この場合、3D 導電 性グラフェン足場は、簡便な湿式化学法による酸化グラフェンの 剥離によって得られた配向したグラフェンシートを用いて作製さ れました。この負極材料が高い容量を維持できるのは、グラフェ ンの炭素欠陥を通してシートを横断してリチウムイオンが拡散可 能であるためです。そのため、電極全体を通して Li の拡散パスが 短縮され、構造体内部への十分なアクセスと、Si ナノ粒子におけ る迅速なリチウム合金化/脱合金化が可能となります。また、Xin らも、一連の化学的プロセスを通して、3D多孔性構造を有する Si /グラフェンナノ複合材料の合成を報告しています⁴⁰。この構造 は、1A g⁻¹の充電速度において 30 サイクル後にごくわずかな減少 を伴う、900 mAh g⁻¹ の可逆容量をもたらします。3D グラフェ ン系複合材料は、その 3D グラフェンネットワークによる電極の 導電性向上のため、優れたサイクル安定性および高いレート特性 を示し、2Dナノ構造を上回るレート特性が実証されています。

図4.A) 個々の Si@Void@C 粒子の概略図(上)、リチウム化および脱リ チウム化の前後における、Si@Void@C 粉末の *in situ* TEM 像(下)。許 可を得て参考文献 31 から引用。Copyright 2012 American Chemical Society。B) 面内に炭素格子欠陥を有するグラフェン足場で構築された、 複合電極材料の断片の略図(上)(Si:大きな球、Liイオン:小さな球)、 および Si-3D グラフェン足場の断面の SEM 像(下)。挿入写真は、グラフ ェンシートの間に一様に埋め込まれた Si ナノ粒子を示しています。参考文 献 39 から引用。Copyright 2011 Wiley-VCH。

将来展望

ごく最近、Wu らは、比較的安定した可逆容量(1,000 サイクルの 後で 1,600 mAh g⁻¹)、および非常に安定した性能(5,000 回の充 放電サイクル後も顕著な容量減少が見られません)を有する、理 想的な 3D 多孔性 Si /導電性ポリマー・ヒドロゲル複合電極につ いて報告しました²。多孔性で階層的なヒドロゲル構造体には大き な利点があり、導電性ポリマーの 3D ネットワークによって高速 の電子輸送およびイオン輸送経路を可能とし、さらに、Si 粒子の 体積膨張のための多孔性空隙も得られます。図5 に示すように、 この in situ 重合の作製手法によりスケールアップ可能性が示され、 工業化に向けて有望であることが明らかとなりました。

図 5.3D 多孔性 Si ナノ粒子/導電性ポリマー・ヒドロゲル複合電極の概略図。(A) 導電性ポリマーにより各 Si ナノ粒子表面はコーティングされ、 さらに多孔性のヒドロゲル構造体に接続しています。写真(B~D)は、 電極作製プロセス中の重要な工程を示しています。参考文献 2 から引用。 Copyright 2013 Nature Publishing Group。

要約および課題

シリコンは、既知の材料の中で最も高い容量を有し、比較的低い 作動電位を示すなどの利点があることから、リチウムイオン電池 用の最も有望な負極材料の1つです。しかし、シリコン負極が実 際のリチウム電池に利用されるには、極めて大きな体積変化の問 題を解決しなければなりません。本稿では、電気化学的な性能が 向上した様々なシリコン負極およびシリコン系複合負極について 解説し、Si 負極に関する課題を解決するための2つの実行可能な 方法を示しました。Si 負極に関する実用化に向けた条件、つまり 高い出力密度、長期安定性、シンプルな製造方法および低コスト などに対処するためには、さらなる研究が必要です。

謝辞

上海市自然科学基金(the Shanghai Municipal Natural Science Foundation, 12ZR1414300)、中国国家自然科学基金委員会 (the National Natural Science Foundation of China, NSFC, 51172142、51302169)、the Starting Foundation for New Teacher of Shanghai Jiao Tong University(上海交通大学, 12X100040119)、the Scientific Research Foundation for Returned Overseas Chinese Scholars, State Education Ministry, and the Third Phase of 211 Project for Advanced Materials Science(WS3116205007)による支援に深く感謝いたします。

References

- "Lithium-Ion Battery Market Set for Boom Courtesy of Hybrid and Electric Vehicles" IHS Isuppli Market Research. http://www.isuppli.com/semiconductor-value-chain/ news/pages/lithium-ion-battery-market-set-for-boom-courtesy-of-hybrid-andelectric-vehicles.aspx
- (2) Wu, H.; Yu, G.; Pan, L.; Liu, N.; McDowell, M. T.; Bao, Z.; Cui, Y., Nature Communications 2013,4, 1943. doi: 10.1038/ncomms2941.
- Song, X. F., *Nanotechnology*, **2013**, *24*, 205401.
 Tang, K.; White, R. J.; Mu, X.; Titirici, M. M.; van Aken, P. A.; Maier, J., *ChemSusChem*, **2012**, *5*, 400.
- (5) Yi, T.F.; Jiang, L. J.; Shu, J.; Yue, C. B.; Zhu, R. S.; Qiao, H.-B., *Journal of Physics and Chemistry of Solids*, **2010**, *71*, 1236.
- (6) A. Trifonova; M. Wachtler; Winter, M., Besenhard, J. O., *Ionics*, 2002, 8, 321.
- (7) Yan, J. M.; Huang, H. Z.; Zhang, J.; Liu, Z. J.; Yang, Y., Journal of Power Sources, 2005, 146, 264.
- (8) Zhang, W. J., Journal of Power Sources, 2011, 196, 13.
- (9) Wu, H.; Zheng, G.; Liu, N.; Carney, T. J.; Yang, Y.; Cui, Y., Nano Letters, 2012, 12, 904.
- (10) Szczech, J. R.; Jin, S., Energy & Environmental Science, 2011, 4, 56.
- (11) Wu, H.; Cui, Y., Nano Today, 2012, 7, 414.
- (12) Wu, H.; Chan, G.; Choi, J. W.; Ryu, I; Yao, Y.; McDowell, M. T.; Lee, S. W.; Jackson, A.; Yang, Y.; Hu, L. B.; Cui, Y., *Nature Nanotechnology*, **2012**, *7*, 310.
- (13) Kim, I. S; Blomgren, G. E.; Kumta, P. N., Electrochemical and Solid-State Letters, 2003, 6, A157.
- (14) Beaulieu, L. Y.; Larcher, D.; Dunlap, R. A.; Dahn, J. R., Journal of The Electrochemical Society, 2000, 147, 3206.
- (15) Todd, A. D. W.; Ferguson, P. P.; Barker, J. G.; Fleischauer, M. D.; Dahn, J. R., Journal of The Electrochemical Society, 2009, 156, A1034.
- (16) Yang, J.; Winter, M.; Besenhard, J. O., *Solid State Ionics*, **1996**, *90*, 281.
 (17) Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y., *ACS NANO*, **2012**, *6*, 1522.
- (18) Kim, H.; Seo, M.; Park, M. H.; Cho, J., Angewandte Chemie International Edition, 2010, 49, 2146.
- (19) Kim, H.; Han, B.; Choo, J.; Cho, J., Angewandte Chemie International Edition, 2008, 47, 10151.
- (20) Chan, C. K.; Peng, H.; Liu, G.; McIlwrath, K.; Zhang, X. F.; Huggins, R. A.; Cui, Y., Nature Nanotechnology, 2007, 3, 31.
- (21) Park, M. H.; Kim, M. G.; Joo, J.; Kim, K.; Kim, J.; Ahn, S.; Cui, Y.; Cho, J., Nano Letters, 2009, 9, 3844.
- (22) Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijk, W. V., *Review Article*, 2005, 4, 366.
- (23) Liu, H. K.; Guo, Z. P.; Wang, J. Z.; Konstantinov, K., Journal of Materials Chemistry, 2010, 20, 10055.
- (24) Dimov, N.; Kugino, S.; Yoshio, M., *Electrochimica Acta*, **2003**, *48*, 1579.
- (25) Yoshio, M.; Wang, H.; Fukuda, K.; Umeno, T.; Dimov, N.; Ogumi, Z., Journal of The Electrochemical Society, 2002, 149, A1598.
- (26) Chen, P. C.; Xu, J.; Chen, H.; Zhou, C., *Nano Research*, 2010, 4, 290.
 (27) Li, H.; Huang, X. J.; Chen, L. Q.; Wu, Z. G.; Liang, Y., *Electrochemical and Solid-State Letters*, 1999, 2, 547.
- (28) Lee, H.Y.; Lee, S. M., Electrochemistry Communications, 2004, 6, 465
- (29) Saint, J.; Morcrette, M.; Larcher, D.; Laffont, L.; Beattie, S.; Pérès, J. P.; Talaga, D.; Couzi, M.; Tarascon, J. M., Advanced Functional Materials, 2007, 17, 1765.
- (30) Luo, J.; Zhao, X.; Wu, J.; Jang, H. D.; Kung, H. H.; Huang, J., The Journal of Physical Chemistry Letters, 2012, 3, 1824.
- (31) Liu, N.; Wu, H.; McDowell, M. T.; Yao, Y.; Wang, C.; Cui, Y., Nano Letters, 2012, 12, 3315.
- (32) Li, X.; Meduri, P.; Chen, X.; Qi, W.; Engelhard, M. H.; Xu, W.; Ding, F.; Xiao, J.; Wang, W.;
- Wang, C.; Zhang, J. G.; Liu, J., Journal of Materials Chemistry, 2012, 22, 11014.
 Magasinki, A.; Dixon, P.; B. Hertzberg; A. Kvit; J. Ayala; Yushin, G., Nature materials, 2010, 9, 353.
- Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H., Chemical Communications, 2010, 46, 2025.
- Tao, H. C.; Fan, L. Z.; Mei, Y.; Qu, X., Electrochemistry Communications, 2011, 13, 1332.
 Chou, S. L.; Wang, J. Z.; Choucair, M.; Liu, H. K.; Stride, J. A.; Dou, S. X., Electrochemistry
- Chou, S. E., Wang, J. Z., Choucaii, M., Liu, H. K., Stilde, J. A., Dou, S. A., Electrochemistry Communications, 2010, 12, 303.
 Caselouide C. Dillo, D.A., Desenanti, C. L. B. Kehlbass, K. M., Zianguy, E. L. Stack, E.
- (37) Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., *Nature*, **2006**, *442*, 282.
 (38) Wen, Y.; Zhu, Y.; Langrock, A.; Manivannan, A.; Ehrman, S. H.; Wang, C., Small, **2013**.
- (38) wen, r; 2-nu, r; Langrock, A; Manivannan, A; Enrman, S. H; Wang, C., Smail, 2013, doi: 10.1002.
 (39) Zhao, X; Hayner, C. M; Kung, M. C; Kung, H. H., Advanced Energy Materials, 2011, 1,
- (40) Xin, X.; Zhou, X.; Wang, F.; Yao, X.; Xu, X.; Zhu, Y.; Liu, Z., Journal of Materials Chemistry,
- (40) Xin, X.; Zhou, X.; Wang, F.; Yao, X.; Xu, X.; Zhu, Y.; Liu, Z., Journal of Materials Chemistry, 2012, 22, 7724.

リチウムイオン電池用アノード材料

リチウムイオン電池材料の最新情報は、aldrich.com/alternative-jp をご覧ください。

Product Name	Composition	Dimensions	Purity	Form	Prod. No.
Lithium titanate, spinel, LTO nanopowder	Li ₄ Ti ₅ O ₁₂	particle size <200 nm (BET)	>99%	nanopowder	702277-25G
Lithium titanate, LTO	Li ₂ TiO ₃	-325 mesh	-	powder	400939-100G
Tin(IV) oxide	SnO ₂	particle size <100 nm (BET)	-	nanopowder	549657-5G 549657-25G
Lithium	Li	particle size 4-10 mesh	99%, metals basis	granular	444456-10G 444456-50G
	Li	thickness \times W 1.5 \times 100 mm	99.9% trace metals basis	ribbon	266000-25G 266000-100G
	Li	thickness \times W 0.75 \times 45 mm	99.9% trace metals basis	ribbon	265993-25G 265993-100G
	Li	thickness \times W 0.38 \times 23 mm	99.9% trace metals basis	ribbon	265985-25G 265985-100G
	Li	diam. 3.2 mm	≥98%	wire	278327-25G 278327-100G
Carbon, mesoporous	C	particle size <500 nm (DLS)	>99.95% trace metals basis	nanopowder	699624-5G 699624-25G
Carbon	C	2 - 12 µm	99.95% trace metals basis	glassy, spherical powder	484164-10G 484164-50G

シリコン

無機材料の検索は、aldrich.com/metalceramic-jpの「周期表検索」をご利用ください。

Product Name	Description	Purity	Form	Prod. No.
Silicon	-	99.95% trace metals basis	pieces	343250-50G 343250-500G
	-60 mesh	99.999% trace metals basis	powder	267414-25G
	-325 mesh	99% trace metals basis	powder	215619-50G 215619-250G 215619-1KG
	particle size <100 nm (TEM)	≥98% trace metals basis	nanopowder	633097-10G 633097-25G

二酸化ケイ素(ナノ材料)

Product Name	Particle Size and Pore Dimensions	Form	Prod. No.
Silica	primary particle size 12 nm (TEM)	nanopowder	718483-100G
	particle size 200 nm pore size 4 nm	mesoporous nanoparticles	748161-5G
Silica, mesostructured	pore volume 2.31 cm³/g	powder	560979-10G
	pore size 2-4 nm pore volume 1-2 cm³/g	powder	541036-5G 541036-25G
	pore size ~ 7.1 nm pore volume 0.91 cm³/g	powder	643637-5G 643637-25G
	pore size 2.1-2.7 nm pore volume 0.98 cm³/g	powder	643645-5G 643645-25G
Silicon dioxide	particle size 10 - 20 nm (BET)	nanopowder	637238-50G 637238-250G 637238-500G
	particle size 5 - 15 nm (TEM)	nanopowder (spherical, porous)	637246-50G 637246-250G 637246-500G
Silicon dioxide, alumina doped	particle size <50 nm	dispersion nanoparticles	701491-25ML 701491-100ML

グラフェン関連製品

ナノ炭素材料の最新情報は、aldrich.com/nano-jp をご覧ください。

グラフェン グラフェンの最新製品リストは aldrich.com/graphene をご覧ください。

Name	Sheet Resistance	Prod. No.
Monolayer graphene film, 1 cm x 1 cm on copper foil	600 Ω/sq	773697-4EA
Monolayer graphene film, 1 cm x 1 cm on quartz	600 Ω/sq	773719-4EA
Monolayer graphene film, 1 cm x 1 cm on SiO ₂ /Si substrate	600 Ω/sq	773700-4EA
Monolayer graphene film, 1 in. x 1 in. on PET film	700 Ω/sq	745863-1EA 745863-5EA
Monolayer graphene film, 2 in. x 2 in. on PET film	700 Ω/sq	745871-1EA

酸化グラフェン(GO)

Name	Concentration	Form	Prod. No.
Reduced graphene oxide	-	powder	777684-250MG 777684-500MG
Graphene oxide	2 mg/mL	dispersion in H ₂ O	763705-25ML 763705-100ML
Graphene oxide	4 mg/mL	dispersion in H ₂ O	777676-50ML 777676-200ML
Graphene oxide, ammonia functionalized	1 mg/mL	dispersion in H ₂ O	791520-25ML 791520-100ML

シリコンナノ材料作製用前駆体

Product Name	Composition	Purity	Form	Prod. No.
(3-Aminopropyl)triethoxysilane	$\mathrm{H_2N(CH_2)_3Si(OC_2H_5)_3}$	≥98.0%	liquid	741442-100ML 741442-500ML
Hexamethyldisilane	$(Si(CH_3)_3)_2$	98%	liquid	217069-5G 217069-10G 217069-50G
Tetraethyl orthosilicate	Si(OC ₂ H ₅) ₄	99.999% trace metals basis	liquid	333859-25ML 333859-100ML
Tetramethylammonium silicate solution	$(CH_3)_4N(OH)\cdot 2SiO_2$	≥99.99% trace metals basis	liquid 15-20 wt. % in H ₂ O	438669-100ML 438669-500ML
Tetramethyl orthosilicate	Si(OCH ₃) ₄	≥98% ≥99.9% trace metals basis, deposition grac	liquid de	679259-50G

原子層堆積法によるリチウムイオン電池、 燃料電池および太陽電池用ナノ材料の作製

Erwin Kessels,* Harm Knoops, Matthieu Weber, Adrie Mackus, and Mariadriana Creatore Department of Applied Physics, Eindhoven University of Technology P.O. Box 513, 5600 MB Eindhoven, The Netherlands *Email: w.m.m.kessels@tue.nl

はじめに

ナノ材料は、持続可能な生活を実現するための再生可能エネルギ ー技術の実用化に必要な、技術革新をもたらすことが期待されて います。その技術には、環境発電(energy harvesting) および エネルギー貯蔵デバイスが含まれます。近年、ナノ材料分野では、 0D 材料(ナノ粒子)、1D 材料(ナノワイヤ、ナノチューブ)、お よび 2D 材料(グラフェンなど)に関する研究が盛んに進められ ており、これらはデバイス素子のビルディングブロックとして機 能します。一方で、3D ナノ構造についても多くの関心が集まって います。ナノ材料からデバイスを構築する際には、その修飾、機 能化および安定化のみならず、特に作製方法において多くの課題 が生じます。

これら課題に対する解決策の1つに気相堆積プロセスの利用があ ります。例えば、ナノ粒子、ナノワイヤ、ナノチューブおよびグ ラフェンは、すべて気相から成長させることが可能です。また、 薄膜についても同様であり、ナノ材料の修飾、機能化、安定化、 またはナノ構造材料の構築に用いられます。現在注目を集めてい る気相堆積技術は原子層堆積(ALD: atomic layer deposition) 法であり、本稿では、環境発電およびエネルギー貯蔵デバイスの 構築へのその応用について取り上げます。ALD 技術による薄膜お よびナノ粒子の作製を紹介し、さらに、それらナノ材料のリチウ ムイオン電池、燃料電池および太陽電池への応用に関する最近の 進展を簡単に概説します。

薄膜およびナノ粒子の作製に用いられる原子 層堆積法

ALD 法では、前駆体および反応性ガスが反応チャンバーに交互に 供給され(図1A)、熱分解ではなく表面での化学反応によって堆 積が進みます¹。ALD サイクルの半反応において、その表面の化 学反応が自己停止(self-limiting)機能を有する必要があり、これ により、薄膜形成の難しい基板形状に対する優れた均一性および コンフォーマルな被覆のみならず、オングストロームレベルの膜 厚を高い精度で制御することが可能となります。加えて、ALDで は比較的低い基板温度で高品質な薄膜が得られます。典型的な基 板温度は400℃から室温までの範囲で、材料やプロセスによって 決まります。さらに、ALDは拡張性の高い技術であり、すでに、 ハードディスクの読み取りヘッド、メモリおよび論理デバイスの 製造で実際に利用されています。

図1. A)2つの半反応からなる ALD サイクルの概略。ALD サイクルでは、 前駆体および反応性ガスが交互に供給され、その間にパージ工程が入りま す。B) ALD プロセスの初期および定常状態。ナノ粒子(左、たとえば金属) および緻密でコンフォーマルな膜(右)の作製を可能とします。

ALD 法の場合、通常の環境下ではアモルファスまたは多結晶薄 膜(図1B)の層状成長(layer-by-layer growth)形式の成長が起 きます。各サイクルでこうした層が1層ずつ堆積されますが、典 型的な「サイクルあたりの成長(growth-per-cycle)」値は0.25 ~1.5Åであり、目的の物質の単分子層よりも小さな値を示しま す。また、成長初期のプロセスは、定常期の成長状態とは大きく 異なります。さらに、基板やその前処理状態、堆積させる材料の 種類によっては成長が阻害されることや、時には促進される場合 もあります²。例えば、酸化物基板または酸化膜を有する基板状

に金属を堆積させる場合、初期成長が layer -by -layer 型ではなく Volmer -Weber 型で起こることが知られています。これは、最初 に金属原子の島が形成される(図1B)ことを意味しており、原子 が気相から直接飛来して吸着、または表面拡散プロセスによって 間接的に吸着することにより、ALDサイクルごとに大きく成長し ます³。一定回数のサイクルの後、アイランドは合体し始め、連 続した膜が得られます。これは、ALDの初期成長期におけるアイ ランド成長を利用することにより、金属ナノ粒子もALDによって 堆積が可能であることを意味しています。島の合体が起きる前に ALDサイクルを停止させる必要がありますが、サイクル数を慎重 に選択することでナノ粒子の粒径を正確に制御できます。図2は、 ALDによって得られた、平面基板上ならびにカーボンナノチュー ブ、ナノワイヤおよび3D構造を持つ基板上におけるナノ粒子や コンフォーマルな膜の堆積を示しています。

図2. ALD 法により様々な基板材料上に堆積したナノ粒子および薄膜の 例。A)酸化物平面基板上の Pd/Pt コア/シェルナノ粒子。B)多層カー ボンナノチューブ上の Pd ナノ粒子。C) Al₂O₃ 薄膜で被覆された GaP ナ ノワイヤ。D) Al₂O₃/TiN/Al₂O₃/TiN 積層構造に覆われたシリコンの溝。A) ~D)のスケールバーはそれぞれ 2 nm、10 nm、200 nm および 0.5 µm。

リチウムイオン電池、燃料電池および太陽電池 リチウムイオン電池

リチウムイオン電池は現在、電気自動車からマイクロシステムに

至る広範囲の用途において、エネルギー貯蔵デバイスとして広く 使用されています。容量、出力および耐用年数の向上には、電極 材料のナノ構造化が用いられる傾向にありますが、一方で電池構 造を変える取り組みも精力的に行われています⁴。後者には、例 えば薄膜から作られる全固体型リチウムイオン電池が含まれ、3D 構造化も提唱されています。ALDは、ナノ構造リチウムイオン電 池の幾つかのコンセプトを実現可能にする技術と考えられていま す⁵。

図3に、その3つのコンセプト(粒子型電極、3D構造型電極、 3D全固体型マイクロ電池)に対するALDの持つ可能性を図解し ました。市販されている電池の電極は、多くの場合マイクロサイ ズの粒子状活物質を基盤にしており、バインダーおよび導電助剤 と混合されます。図3Aは粒子状物質からなる正極を図解したも ので、液体電解質が多孔性ネットワークに深く入り込み、Li⁺輸送 を容易にします。体積当たりの表面積比、つまり容量を増加させ るために粒径をより小さくした場合、電解液の分解、いわゆる SEI (solid electrolyte interface)膜の形成も増加します。この影響は、 被膜(passivating film)もしくは保護膜を適用して粒子表面を修 飾することにより、減少または防止することが可能です。こうし た膜に対しては、高いLi⁺および電子伝導性のために極めて薄い 厚さが要求される一方で、十分に保護するためにコンフォーマル な被覆も必要です。コロラド大学ボルダー校および米国国立再生 エネルギー研究所(NREL)の研究グループが、ALD で堆積した 膜による粒子の保護に成功しています。例えば、Al₂O₃をLiCoO₂ (Aldrich 製品番号:442704)粒子上に堆積させることによって 安定性が向上することが示され⁶、また、Al₂O₃による天然グラフ アイト負極のサイクル寿命の向上も報告されています⁷。後者の場 合、個々の粒子を直接コーティングするのではなく、電極を最初 に構築したのちに Al(CH₃)₃ および H₂O 添加による ALD サイクル を実行することにより、最も長いサイクル寿命が得られることが 明らかとなりました。さらに、非常に薄い層(ほんの数回の ALD サイクルによる)で安定性の向上が見られることから、効果を得 るために緻密な Al₂O₃ 膜が必ずしも必要ではない可能性が示唆さ れました⁷。

ALD は 3D 構造型電極にも用いられています。この電極は材料内 の拡散パスが短縮され、電子および Li⁺ 輸送が向上するようにデ ザインされています。図 3B は、このような構造の一つの例を示 しています。AI のナノワイヤは集電体として働き、ナノワイヤ上 に堆積した活物質への電子輸送が容易になります。さらに、電解 液が接触し易い開放構造のために Li⁺ 輸送が促進されます。実際 にこの構造は、ALD を用いて AI ナノワイヤを TiO₂ でコーティン グすることで Cheah らによって実施されました⁸。負極材料とし て用いられた TiO₂ は比較的高い酸化還元電位を有するため、電解 液分解に関する問題が軽減されます。同様に、Kim らは、ペプチ ド集合体に TiO₂ 薄膜を堆積させることにより、中空の TiO₂ ナノ リボンネットワークを作製しました。TiO₂ の堆積後に高温処理す ることでこのペプチドテンプレートを除去し、TiO₂ 膜のアナター ゼ相への結晶化を行いました⁹。両事例ともに、高い容量およびレ ート特性が認められました。

近年、リチウムイオンマイクロ電池に関心が集まっていますが、 その課題は小さなデバイス寸法で高いエネルギー密度を達成する 点にあります 4。このようなマイクロ電池の場合、一般に全固体型 構造であり、従来のパッケージング方法をそのまま適用すること は困難です。さらに、全固体型電池では電解液の分解に関する問 題が非常に少ないため、サイクル寿命が長くなります。また、固 体材料中でのLi⁺および電子の拡散距離が短いために、薄膜で構成 される電池は厚みを抑える必要があります。出力特性を損なうこ となく貯蔵容量を増加させるには、3D構造が必要であると考えら れており、Notten らは、3D 形状がエッチングされた Si 基板に電 池スタックが堆積した「システム・イン・パッケージ」を提唱し ました¹⁰ (図 3C)。このスタックでは、電解質が両電極に挟まれ た構造をとり、各電極は集電体によって電気回路と接続されます。 さらに、電池スタックは周囲から保護する必要があり、また Si 基 板中への Li の損失を避けるために Li 拡散バリア層が必要です。こ れらすべての層を薄膜として 3D 形状に堆積する必要があるため、 その作製には ALD もしくは非常にコンフォーマルな CVD プロセ スが必要です。このマイクロ電池の研究の初期段階では、passive 材料(集電体やバリア層)の堆積に重点が置かれました。例えば、 TiCl₄ (Aldrich 製品番号: 697079) および H₂-N₂ プラズマから ALD によって堆積した TiN は、完全にコンフォーマルな膜でない 場合でも、Li 拡散バリアおよび集電体として十分に適しているこ とが明らかになっています¹¹。さらに、Ptの良好な接着には特別 な表面処理が必要ですが、ALD によって、MeCpPtMe3(Aldrich 製品番号: 697540) および O2 ガスから Pt 集電体が作製されて います 5。

16

図3. ALD 法で作製した薄膜を利用したリチウムイオン電池の構造。A)液体電解質に対する保護/安定化のため、ALD 超薄膜に覆われた粒子を基盤とした電極を有するリチウムイオン電池。B)ナノ構造を有する電極。Li および電子の拡散距離の減少、材料の亀裂や破砕を避けるための体積変化の緩和、 ナノサイズ効果による貯蔵容量の増加、を目的としています。A)およびB)では、液体電解質がポーラス電極構造の中に浸透することができます。C) 活物質および passive 材料の薄膜が堆積した構造を有する全固体型リチウムイオン電池。3D 構造基板は単位表面積あたりの貯蔵容量の向上に用いられ、 その作製には ALD 法のようなコンフォーマルな堆積技術が必要となります。

研究の第2段階では、活物質の成膜が検討されました。例えば、 CoCp2(Aldrich 製品番号: 339164) および O2 プラズマから ALD によって堆積した Co₃O4 が、良好な薄膜負極材料であること が明らかとなりました¹²。続いて、ALD で調製された LiCoO2 が、 負極材料として電気化学的に活性であることが報告されました¹³。 この材料は、(CoCp2、LiO t -Bu および O2 プラズマの組み合わせ から) Co₃O4 と Li₂CO₃ の ALD サイクルの組み合わせによる、い わゆる「supercycle」で堆積したものであり、電気化学的活性は、 高温アニールによる材料の結晶化後に得られました。近年、さら にいくつかの Li 系材料が ALD プロセスによって堆積されていま すが、電気化学的に活性な薄膜が生成することは、まだ稀です。 このことは、負極材料のみならず、Li を含む正極材料や電解質材 料についても同様です。その他にも、3D 形状でのこれら材料の堆 積や、マイクロ電池デバイスの動作実証が課題として挙げられま す。

燃料電池および太陽電池

リチウムイオン電池で用いられたナノ構造化手法と同様の方法 が、燃料電池や太陽電池などの他のエネルギーデバイスでも検討 されています。電解質として固体金属酸化物を含む、固体酸化物 形燃料電池(SOFC: solid oxide fuel cell)の研究では、動作温度 を 1,000℃に近い従来の温度から、より低い 500 ~ 800℃まで下 げることが大きな課題になっています。こうした高い温度は、電 解質膜として働く金属酸化物中を酸素イオンが通過するために必 要です。1つのアプローチは、薄膜化によって電解質の抵抗を下 げることです。ナノサイズの厚さで電解質を研究するために、い くつかの研究グループが、Y2O3 および ZrO2 の ALD supercycle によりイットリア安定化ジルコニア (YSZ: yttria-stabilized zirconia) 薄膜の堆積を行っています¹⁴。また、太陽電池に関して も、さまざまなタイプのデバイスへの ALD による薄膜の使用が多 く検討されています^{15,16}。結晶シリコン太陽電池表面の不動態化 が Al₂O₃ 膜の ALD 堆積により行われており、ハイスループット製 造が要求されることから、Spatial ALD 法に基づく工業用 ALD 装 置がすでに導入されています¹⁷。CIGS(Cu(In,Ga)Se₂)太陽電池

では、Cdを含まないバッファ層が求められており、ALDによる (Zn,Mg)OやZn(O,S)などの酸化亜鉛化合物やIn2S3の薄膜形成が 主に検討されています¹⁸。色素増感太陽電池の場合、透明導電性 酸化物(TCO:transparent conductive oxide)から電解液への 逆電子移動を防ぐ緻密層としてALD膜が用いられています¹⁹。さ らに、種々の光アノード構造におけるバリア層として多くの研究 が行われています。例えば、TiO2ナノ粒子(Aldrich 製品番号: 700347、700355、700339)をAl2O3不動態薄膜で均一にコー ティングすることにより太陽電池性能が向上しますが、これは、 Al2O3-TiO2界面の高い再結合エネルギー障壁、Al2O3バリアの高 い仕事関数、および色素とAl2O3間の低いエネルギー障壁に関連 しています^{19,20}。さらに、ALD 膜はフレキシブル CIGS や有機太 陽電池用の封止に使用され、優れた防湿バリアでもあります²¹。

上述した燃料電池や太陽電池における ALD の使用例は、すべて薄 膜に関するものでした。しかし、ALD 法で合成されたナノ粒子が これらのデバイスに用いられる場合もあります。例えば、燃料電 池では、電極/電解液界面の還元および酸化反応のために触媒層 が必要です。ALD で作製した Pt は、超薄膜²² としてだけでなく、 ナノ粒子としても用いられます。触媒としてナノ粒子を用いた直 接メタノール燃料電池(DMFC: direct methanol fuel cell)の 例を図4Aに示します。このDMFCでは、触媒粒子上でメタノー ルが酸化、O2 が還元されて、CO2 および H2O が生成します。触 媒には、Pt、Ru、もしくはそれら合金が使用されます。一般的に は、ナノ粒子はカーボンブラックに担持されていますが、代わり にカーボンナノチューブネットワーク構造を用いることもできま す。ALD 技術によって、このカーボンナノチューブ・ネットワー ク構造の外側および内部にナノ粒子を堆積することが可能です²³。 同様に、色素増感太陽電池に、ALD 技術により調製された Pt ナ ノ粒子も使用できます。通常、Pt は、スパッタリングまたは電析 により対極(TCO など)上に作製され、外部回路からの電子によ って13 が31 となる電解質還元プロセスの触媒として機能します。 しかし、フレキシブル色素増感太陽電池では、温度に敏感な薄い 透明ポリマー基板へのナノ結晶 TiO2 光アノードの調製が難しいた 燃料電池および太陽電池用ナノ材料の作製

めに、電池の裏側からの光入射を可能とする透明な対極が必要となります。このことは、対極の Pt 層が高い触媒活性と透明性の両方を有する必要があることを意味しており、高分散ナノ粒子の少量かつ効率的な担持が求められます。実際に、低温でのプロセスが可能な ALD 技術を用いて堆積させることが可能です²⁴。

図4. ALD 技術による貴金属ナノ粒子の応用例。A) 貴金属ナノ粒子を含む電極からなる直接メタノール燃料電池。ナノ粒子は、ALD により電極材料の外側および内部に堆積されます。B) ポリマーおよび金属薄膜から構成されるフレキシブル色素増感太陽電池。光は対極を通過して電池の「裏側」から入射します。ALD による Pt ナノ粒子が塗布された透明導電性酸化物からなる対極により、高い透明性が実現します。

要約

本稿では、リチウムイオン電池、燃料電池および太陽電池におけ る ALD 技術の最近の進展について、幾つかの例を紹介しました。 ALD は、環境発電デバイスおよびエネルギー貯蔵デバイスに用い られる高性能ナノ材料の合成、修飾、機能化、安定化に必要な技 術であり、また、単に薄膜の堆積のみならず、金属ナノ粒子の合 成にも有望な技術であることが明らかです。さらに、ALD は高い 拡張性を有しており、エネルギー技術への ALD の実用化を目指す には重要な要素です。しかし、ALD 法には低コストかつハイスル ープットプロセスとしての実績が未だないため、他の有望な代替 技術が登場した場合には、その技術が代わりに利用される可能性 はあります。仮にそうなった場合でも、デバイス実現可能性の技 術的な検証や、モデル研究のための出発点として、ALD は極めて 重要な技術であることに変わりありません。

謝辞

Eindhoven University of Technology (TU/e)の Peter Notten 教授、Danish Technological Institute (DTI)の Leif Christensen 博士、University of Rome Tor Vergataの Thomas Brown 博 士、およびそのメンバーとの有益な議論およびその協力に対し、 感謝いたします。本研究に貢献して頂いた Plasma & Materials Processing group (TU/e)のメンバーに感謝します。また、電子 顕微鏡画像を提供していただいた Marcel Verheijen 博士 (TU/e) に深く感謝いたします。

References

- (1) George, S.M., Chem. Rev., 2010, 110, 111.
- (2) Puurunen, R.L., J. Appl. Phys., 2005, 97, 121301.
- (3) Mackus, A.J.M., Verheijen, M.A., Leick, N., Bol, A.A., Kessels, W.M.M., Chem. Mater. 2013, 25, 1905.
- (4) Armand, M., Tarascon, J.M., Nature, 2008, 451, 652.
- (5) Knoops, H.C.M., Donders, M.E., van de Sanden, M.C.M., Notten, P.H.L., Kessels, W.M.M., J. Vac. Sci. Technol. A, 2012, 30, 010801-1.
- (6) Scott, I.D., Jung, Y.S., Cavanagh, A.S., Yan, Y., Dillon, A.C., George, S.M., Lee, S.H., Nano Lett. 2011, 11, 414.
- (7) Jung, Y.S., Cavanagh, A.S., Riley, L.A., Kang, S.-H., Dillon, A.C., Groner, M.D., George, S.M., Lee, S.-H., Adv. Mater. 2010, 22, 2172.
- (8) Cheah, S.K., Perre, E., Rooth, M., Fondell, M., Hårsta, A, Nyholm, L., Boman, M., Gustafsson, T., Lu, J., Simon, P., Edström, K., *Nano Letters* 2009, 9, 3230.
- (9) Kim, S.W., Han, T.H., Kim, J., Gwon, H., Moon, H.S., Kang, S.W., Kim, S.O., Kang, K., ACS Nano 2009, 3, 1085.
- (10) Notten, P.H.L., Roozeboom, F., Niessen, R.A.H., and Baggetto, L., Adv. Mater. 2007, 19, 4564.
- (11) Baggetto, L., Knoops, H. C. M., Niessen, R.A.H., Kessels, W.M.M., Notten, P.H.L., J. Mater. Chem. 2010, 20, 3703.
- (12) Donders, M.E., Knoops, H.C.M., Kessels, W.M.M., Notten, P.H.L., J. Power Sources 2012, 203, 72.
- (13) Donders, M.E., Arnoldbik, W.M., Knoops, H.C.M., Kessels, W.M.M., Notten, P.H.L., J. Electrochem. Soc., 2013, 160, A3066.
- (14) Prinz, F.B., ECS Trans., 2008, 16, 15.
- (15) Bakke, J.R., Pickrahn, K.L., Brennan, T.P., Bent, S.F., Nanoscale 2011, 3, 3482.
- (16) van Delft, J.A., Garcia-Alonso, D., Kessels, W.M.M., Semicond. Sci. Technol., 2012, 27, 074002.
- (17) Dingemans, G., Kessels, W.M.M., J. Vac. Sci. Technol. A, 2012, 30, 040802.
- (18) Naghavi, N., Abou-Ras, D., Allsop, N., Barreau, N., Bücheler, S., Ennaoui, A., Fischer, C.-H., Guillen, C., Hariskos, D., Herrero, J., Klenk, R., Kushiya, K., Lincot, D., Menner, R., Nakada, T., Platzer-Björkman, C., Spiering, S., Tiwari, A.N., Törndahl, T., Prog. Photovoltaics Res. Appl., 2003, 11, 437.
- (19) Choi, H., Nahm, C., Kim, J., Kim, C., Kang, S., Hwang, T., Park, B., Curr. Appl. Phys. 2013, 13, 52.
- (20) Tien T.C., Pan F.M., Wang L.P., Tsai F.Y., Lin C., J. Phys. Chem. C, 2010, 114, 10048.
- (21) Potscavage, W.J., Yoo, S., Domercq, B., Kippelen, B., *Appl. Phys. Lett.* **2007**, *90*, 253511.
- Jiang, X., Huang, H., Prinz, F.B., Bent, S.F., *Chem. Mater.* 2008, *20*, 3897.
 Johansson, A.-C., Yang, R.B., Haugshøj, K.B., Larsen, J.V., Christensen, L.H., Thomsen, E.V., *Int. J. Hydrogen Energy* 2013, *38*, 11406.
- (24) Garcia-Alonso, D., Zardetto, V., Mackus, A.J.M., De Rossi, F., Verheijen, M.A., Brown, T.M., Kessels, W.M.M., Creatore, M., Adv. Energy Mater. 2014, 4, 1300831.

CVD/ALD用前駆体材料

ステンレススチールシリンダーでお届けします。前駆体化合物の最新情報はaldrich.com/micronano-jpをご覧下さい。

Product Name	Acronym	Structure	Form	Prod. No.
Bis(ethylcyclopentadienyl)cobalt(II)	(EtCp) ₂ Co	H ₃ C CH ₃	liquid	753076-10G
Bis(methyl-n ⁵ -cyclopentadienyl)methoxymethyl- zirconium	ZrD-CO ₄ ; ZRCMMM	HLC-ZZ-OCH ₃	liquid	725471-10G
Tetrakis(diethylamido)titanium(IV)	TDEAT	$\begin{array}{c} CH_3 CH_3 \\ H_3C & CH_3 \\ H_3C & CH_3 \\ H_3C & CH_3 \\ CH_3 CH_3 \end{array}$	liquid	725536-10G
Tetrakis(dimethylamido)titanium(IV)	TDMAT	H ₃ C, CH ₃ H ₃ C, N CH ₃ H ₃ C, N-TI-N-CH ₃ H ₃ C CH ₃	liquid	669008-25G
Tetrakis(dimethylamido)zirconium(IV)	TDMAZ	$\begin{array}{c} {\sf H}_3{\sf C}, {\sf CH}_3\\ {\sf H}_3{\sf C}, {\sf N}-{\sf Z}r-{\sf N}\\ {\sf H}_3{\sf C}, {\sf N}-{\sf CH}_3\\ {\sf H}_3{\sf C}, {\sf CH}_3\\ {\sf H}_3{\sf C}, {\sf CH}_3\end{array}$	solid	669016-25G
Tetrakis(ethylmethylamido)zirconium(IV)	TEMAZ	$\begin{array}{c} & & CH_{3} \\ H_{3}C \overset{H_{3}C}{\longrightarrow} & CH_{3} \\ H_{3}C \overset{N-Zr-N}{\bigvee} & CH_{3} \\ H_{3}C \overset{N-Zr-N}{\bigvee} & CH_{3} \\ CH_{3} \\ CH_{3} \end{array}$	liquid	725528-10G
Titanium(IV) isopropoxide	TTIP	$\left[\begin{array}{c} CH_3\\ H_3C \frown O \end{array}\right]_4 T^{4+}$	liquid	687502-25G
Titanium tetrachloride	TTC	TiCl ₄	liquid	697079-25G
Trimethyl(methylcyclopentadienyl)platinum(IV)	MeCpPtMe ₃	СН ₃ H ₃ C- <mark>р</mark> t-CH ₃ СН ₃	low-melting solid	697540-10G
Tris[NN-bis(trimethylsilyl)amide]yttrium	YTDTMSA	™s _{`N} -™s ™s _{`N} - ^V - _N -™s [†] ms †ms	powder	702021-10G
Water	-	H ₂ O	liquid	697125-25ML
Zirconium(IV) <i>tert</i> -butoxide	ZTB	t-Bu∽O, ∕O~t-Bu t-Bu∼O ^{Zr} O~t-Bu	liquid	759554-25G

気相および液相成長薄膜作製用前駆体

前駆体化合物の最新情報はaldrich.com/micronano-jp をご覧下さい。

電池

Product Name	Structure	Purity	Form	Prod. No.
Aluminum acetylacetonate	$ \begin{bmatrix} O & O^{*} \\ H_{3}C & CH_{3} \end{bmatrix}_{3} AI^{3+} $	99.999% trace metals basis	solid powder	674753-5G 674753-25G
Aluminum isopropoxide	o∕ ^{.iPr} i-Pr _O .Al _O ∕iPr	≥99.99% trace metals basis	solid powder and chunks	229407-10G 229407-50G 229407-250G
Aluminum tris(2,2,6,6-tetramethyl-3,5- heptanedionate)	$\left[\begin{array}{c} O & O^{-} \\ t\text{-}Bu & t\text{-}Bu \end{array}\right]_{3} Al^{3+}$	98%	solid	397288-5G
Bis(cyclopentadienyl)cobalt(II)	Q-8-Q	-	solid powder or crystals	339164-2G 339164-10G
Bis(ethylcyclopentadienyl)cobalt(ll)	H ₃ C CH ₃	-	liquid	510645-1G
Bis(pentamethylcyclopentadienyl)cobalt(ll)	$\begin{array}{c} CH_3\\H_3C & \longrightarrow \\H_3C & \longrightarrow \\CH_3 \\H_3C & \longrightarrow \\CH_3 \end{array}$	-	solid	401781-1G
Cobalt(ll) acetate	$\left[\begin{array}{c} O\\ H_3C \\ \end{array}\right]_2^{CO^+}$	99.995% trace metals basis	solid crystals and lumps	399973-1G 399973-10G
Cobalt(III) acetylacetonate	$ \begin{bmatrix} 0 & 0 \\ H_3C & & \\ \hline \hline & & \\ \hline \\ \hline$	99.99% trace metals basis	granular powder or crystals	494534-5G 494534-25G
Cobalt(II) hexafluoroacetylacetonate hydrate	$\begin{bmatrix} 0 & 0 \\ F_3 C & CF_3 \end{bmatrix}_2 C 0^{2+} \cdot xH_2 0$	98%	solid powder or crystals	339695-5G
Lithium acetate	O H ₃ C OLi	99.95% trace metals basis	powder or crystals	517992-100G
Lithium <i>tert</i> -butoxide	CH₃ H₃C┿OLi CH₃	97%	powder and chunks	400173-25G 400173-100G
Lithium tert-butoxide solution	CH₃ H₃C ←OLi CH₃	-	liquid 1.0 M in hexanes	398209-50ML 398209-250ML
Lithium tert-butoxide solution	CH₃ H₃C∱OLi CH₃	-	liquid 1.0 M in THF	398195-50ML 398195-250ML
Lithium methoxide	CH₃OLi	98%	powder	344370-25G 344370-100G
Tetrakis(diethylamido)titanium(IV)	$\begin{array}{c} CH_{3} CH_{3} \\ H_{3}C \\ N \\ H_{3}C \\ N \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{3}C \\ H_{3} \\ CH_{3} \end{array}$	99.999% trace metals basis	liquid	469866-5G 469866-25G
Tetrakis(dimethylamido)titanium(IV)	$\begin{array}{ccc} H_{3}C, & CH_{3} \\ H_{3}C, & N & CH_{3} \\ H_{3}C'^{N-T_{1}-N'} CH_{3} \\ & N \\ H_{3}C' & CH_{3} \end{array}$	99.999%	liquid	469858-5G 469858-25G
Tetrakis(ethylmethylamido)titanium(IV)	$\begin{array}{c} CH_3\\ H_3C\underbrace{N}_{N} \xrightarrow{CH_3}\\ H_3C\underbrace{N}_{N} \xrightarrow{CH_3}\\ H_3C \xrightarrow{N}_{N} \xrightarrow{CH_3}\\ CH_3 \xrightarrow{CH_3}\end{array}$	≥99.99%	liquid	473537-5G
Titanium(IV) <i>tert</i> -butoxide	t-Bu∽O, O~t-Bu t-Bu∽O, Ti O~t-Bu	-	liquid	462551-25ML 462551-50ML

Product Name	Structure	Purity	Form	Prod. No.
Titanium(IV) diisopropoxidebis(2,2,6,6- tetramethyl-3,5-heptanedionate)	$\left[\begin{array}{c} O & O^{*} \\ t \cdot B u & t \cdot B u \end{array}\right]_{2} T I^{4+} \left[\begin{array}{c} C H_{3} \\ \cdot O & C H_{3} \\ 0 & C H_{3} \\ \end{array}\right]_{2}$	99.99%	solid	494143-5G
Titanium(IV) isopropoxide	$\begin{bmatrix} CH_3\\H_3C & C\end{bmatrix}_4 TI^{4+}$	99.999% trace metals basis	liquid	377996-5ML 377996-25ML 377996-100ML
Tris(dimethylamido)aluminum(lll)	$\begin{array}{c c} H_3C & H_3C & CH_3 & CH_3 \\ H_3C \cdot \dot{N} & A & N \cdot CH_3 \\ H_3C \cdot N & A & N \cdot CH_3 \\ H_3C & H_3C & CH_3 & CH_3 \end{array}$		solid	469947-10G

燃料電池·太陽電池				
Product Name	Structure	Purity	Form	Prod. No.
Copper bis(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl- 3,5-octanedionate)	$\begin{bmatrix} F & O & O' \\ F_3 C & F & F \end{bmatrix}_2 Cu^{2+}$	≥99.99% trace metals basis	solid	541761-1G 541761-5G
Copper bis(2,2,6,6-tetramethyl-3,5- heptanedionate)	$\left[\begin{array}{c} O & O' \\ t \cdot B u & t \cdot B u \end{array}\right]_2 C u^{2+}$	99%	solid	345083-1G
Gallium(III) acetylacetonate	$ \begin{bmatrix} 0 & 0 \\ H_3 C & C \\ H_3 C & C \\ \end{bmatrix}_3 Ga^{3+} $	99.99% trace metals basis	solid	393541-5G 393541-25G
Indium(III) acetate hydrate	$\left[\begin{array}{c} O\\ H_3C \\ \end{array}\right]_3 ln^{3+} \cdot xH_2O$	99.99% trace metals basis	powder and chunks	342378-5G 342378-25G
Indium(III) acetylacetonate	$ \begin{bmatrix} O & O^{*} \\ H_3 C & & CH_3 \end{bmatrix}_3 In^{3+} \label{eq:harden-constraint}$	≥99.99% trace metals basis	solid	13300-5G
Indium(III) isopropoxide solution	$\begin{array}{c} H_3C \smile CH_3 \\ CH_3 & O \\ H_3C \smile O^{- n} \cdot O \smile CH_3 \end{array}$	≥99% trace metals basis	liquid 5 % (w/v) in isopropano	760285-5ML
Tetrakis(dimethylamido)zirconium(IV)	$\begin{array}{c} H_{3}C, \ CH_{3} \\ H_{3}C, N, CH_{3} \\ H_{3}C, N-Zr - N \\ H_{3}C, OH_{3} \\ H_{3}C, CH_{3} \end{array}$	≥99.99%	solid	579211-5G
Tris(butylcyclopentadienyl)yttrium(III)	$R = CH_2(CH_2)_2CH_3$	99.9% trace metals basis	liquid	524522-5ML
Tris(dimethylamido)gallium(III)	$\begin{array}{c} H_{3}C \\ CH_{3} \\ H_{3}C-N \\ H_{3}C-N \\ H_{3}C-N \\ H_{3}C-N \\ CH_{3} \\ H_{3}C \\ CH_{3} \\ H_{3}C \\ CH_{3} \\ H_{3}C \\ CH_{3} \end{array}$	98%	solid	546534-5G
Yttrium(III) acetylacetonate hydrate	$ \begin{bmatrix} O & O^{-} \\ H_3 C & C H_3 \end{bmatrix}_3 Y^{3+} \cdot x H_2 O $	99.95% trace metals basis	powder or crystals	438790-5G
Yttrium(III) 2-ethylhexanoate	$\left[\begin{array}{c} 0\\ H_3C \\ CH_3\end{array}\right]_3^{3+}$	99.9% trace metals basis	powder or crystals	347086-10G
Yttrium(III) hexafluoroacetylacetonate dihydrate	$\begin{bmatrix} 0 & 0^{\cdot} \\ F_3 C & C F_3 \end{bmatrix} Y^{3+} \cdot 2H_2 O$	98%	powder or crystals	345601-5G

Product Name	Structure	Purity	Form	Prod. No.
Yttrium 2-methoxyethoxide solution	$ \begin{array}{c} H_{3}C \\ \bigcirc \\ 0 \\ H_{3}C \\ 0 \end{array} \begin{array}{c} C \\ C $	-	liquid 15-20 wt. % in 2-methoxyethanol	771538-25G
Yttrium(III) tris(2,2,6,6-tetramethyl-3,5- heptanedionate)	$\left[\begin{array}{c} 0 & 0 \\ t \cdot Bu & t \cdot Bu \end{array}\right]_3 Y^{3+}$	99.9% trace metals basis	solid	373826-1G
Zirconium(IV) <i>tert</i> -butoxide	t-Bu∽O [,] Zr _O ∽t-Bu t-Bu∼O [,] Zr _O ∽t-Bu	99.999% trace metals basis	liquid	560030-5G 560030-25G
Zirconium(IV) dibutoxide(bis-2,4- pentanedionate) solution	$ \begin{bmatrix} 0 & 0^{-} \\ H_{3}C & C \\ H_{3}C & C \\ \end{bmatrix}_{2} \begin{array}{c} 0 & C \\ Z \\ Z \\ 0 & C \\ C$	99.9% trace metals basis	liquid 25 wt. % in 1-butanol/ toluene	771600-100G
Zirconium(IV) diisopropoxidebis(2,2,6,6- tetramethyl-3,5-heptanedionate)	$\begin{array}{c} H_3C \overbrace{C}^{CH_3} t\text{-}Bu & O\\ 0 & t\text{-}Bu & O\\ c & c & C \\ 0 & t\text{-}Bu & O\\ 0 & t\text{-}Bu & O\\ 0 & t\text{-}Bu & O\\ H_3C & CH_3 \end{array}$	≥99.99%	solid	494151-25G
Zirconium(IV) 2-ethylhexanoate in mineral spirits	$\left[\begin{array}{c} 0\\ H_3C & \\ CH_3\end{array}\right]_4 Zr^{4+}$	~6% Zr basis	liquid	768634-50G
Zirconium tetrakis(2,2,6,6-tetramethyl-3,5- heptanedionate)	$\left[\begin{array}{cc} O & O^{\cdot} \\ t - B u & t - B u \end{array}\right]_4 Z^{4+}$	≥99.99%	solid	478865-5G

スパッタリングターゲット

最新情報は*aldrich.com/pvd* をご覧ください。

Product Name	Composition	Dimensions	Purity	Prod. No.
Aluminum	Al	diam. \times thickness 3.00 \times 0.125 in.	99.9995% trace metals basis	749036-1EA
Aluminum zinc oxide	Al ₂ 0 ₃ /ZnO	diam. \times thickness 3.00 \times 0.125 in.	99.99% trace metals basis	752665-1EA
Chromium	Cr	diam. \times thickness 3.00 \times 0.125 in.	99.95% trace metals basis	749052-1EA
Gallium zinc oxide	ZnO/Ga ₂ O ₃	diam. \times thickness 3.00 \times 0.125 in.	99.99% trace metals basis	752673-1EA
Indium oxide	In ₂ O ₃	diam. \times thickness 3.00 \times 0.125 in.	99.99% trace metals basis	752649-1EA
Indium tin oxide	In ₂ O ₃ /SnO ₂	diam. \times thickness 3.00 \times 0.125 in.	99.99% trace metals basis	752657-1EA
Indium zinc oxide	In ₂ O ₃ /ZnO	diam. \times thickness 3.00 \times 0.125 in.	99.99% trace metals basis	752703-1EA
Titanium	Ti	diam. \times thickness 3.00 \times 0.125 in.	99.995% trace metals basis	749044-1EA
Zinc	Zn	diam. \times thickness 3.00 \times 0.125 in.	99.995% trace metals basis	749060-1EA
Zinc oxide	ZnO	diam. \times thickness 3.00 \times 0.125 in.	99.99% trace metals basis	752681-1EA

薄膜作製用基板

最新情報はaldrich.com/substrates をご覧ください。

Product Name	Composition	Dimensions	Orientation	Prod. No.
Aluminum oxide	Al_2O_3	$L \times W \times$ thickness 10 \times 10 \times 0.5 mm	<0001>	634875-1EA 634875-5EA
Magnesium aluminate	MgO·Al ₂ O ₃	L \times W \times thickness 10 \times 10 \times 0.5 mm	<100>	635073-1EA
Magnesium oxide	MgO	$L \times W \times$ thickness 10 \times 10 \times 0.5 mm	<100>	634646-1EA
Silicon	Si	diam. \times thickness 2 in. \times 0.5 mm	<100>	646687-1EA 646687-5EA
	Si	diam. \times thickness 3 in. \times 0.5 mm	<100>	647535-1EA 647535-5EA
	Si	diam. \times thickness 2 in. \times 0.5 mm	<111>	647101-1EA 647101-5EA
Silicon dioxide	SiO ₂	L \times W \times thickness 10 \times 10 \times 0.5 mm	<0001>	634867-5EA
Strontium titanate	SrTiO ₃	L \times W \times thickness 10 \times 10 \times 0.5 mm	<110>	634670-1EA
Titanium(IV) oxide, rutile	TiO ₂	$L \times W \times$ thickness 10 \times 10 \times 0.5 mm	<001>	635057-1EA
	TiO ₂	$L \times W \times$ thickness 10 \times 10 \times 0.5 mm	<100>	635049-1EA

色素増感太陽電池用高効率ナノスケール無機光吸収材料

School of Chemical Engineering and Department of Energy Science Sungkyunkwan University, Suwon 440-746, Republic of Korea Email: npark@skku.edu Phone: +82-31-290-7241. Fax: +82-31-290-7272

はじめに

1991 年に Gratzel らが低コストの色素増感太陽電池 (DSSC: dye-sensitized solar cell) を最初に報告して以来¹、DSSC は、低 コストであるのみならず透明性や高い意匠性を有するため、最も 有望な太陽電池技術の1つとされています。半導体 p-n 接合型太 陽電池と異なり、DSSC はレドックス電解液を含むために湿式タ イプに分類されています。しかし、DSSC は、液体電解液の代わ りに固体のホール伝導体を用いることで、固体構造を持つ電池と して作製することもできます。DSSC は、FTO (fluorine-doped tin oxide) 基板上に堆積したナノ結晶 TiO₂ 膜、レドックス電解液 またはホール伝導体、および対極からなります。TiO2 表面上に吸 着した光吸収材料は、電子およびホールを生成します。対電極と しては、湿式デバイスの場合は Pt または炭素が、固体型デバイス では Au または Ag が使用されます。過去 20 年間の間に、DSSC 研究はかなりの進展を見せており、その結果、ポルフィリン色 素、コバルト錯体レドックス電解質、および 10 µm のメソポーラ ス TiO2 膜を用いた DSSC において、12% という高い光電変換効 率が達成されています²。一方、固体型 DSSC は、ホール伝導体 として液体電解質の代わりに 2,2',7,7'-tetrakis(N,N-p-dimethoxyphenylamino)-9,9'-spirobifluorene (spiro-MeOTAD, Aldrich 製品番号: 792071)を用いて 1998年に開発されました³。し かし、変換効率は1%と低いものでした。変換効率の向上を目指 し、固体型 DSSC 用の高い吸光係数の有機色素が設計・合成され ているものの、未だ大きな改善は見られていません。また、Sb2S3 や CdSe のような無機量子ドット材料が増感剤として用いられて おり、有機増感剤に比べて良好な効率が得られています 45。さら に、固体型 DSSC における画期的な技術が、2012 年に Park グル ープにより開発されました。厚さ 0.6 μm の TiO2 薄膜上に吸着し た CH₃NH₃Pbl₃ ペロブスカイト増感剤によって、9.7% の変換効率 が達成されています 6。この我々の報告の直後に、ペロブスカイト 型増感剤を基盤にした DSSC では、15% の変換効率が報告されま した⁷。本稿では、ナノスケールの無機増感剤を用いた DSSC にお ける進展について紹介します。

メソポーラス TiO2 薄膜の重要性

DSSCには3つの重要な構成要素(メソポーラスn型酸化物層、 増感剤、レドックス電解液または p型ホール伝導体)がありますが、 太陽電池の性能は酸化物層の結晶相、バンド構造、形態、細孔径 および多孔性に大きく依存するため、メソポーラス酸化物膜をま ず検討する必要があります。同じ増感剤および電解液を用いても、 使用される TiO2 薄膜の結晶相が異なると、光起電力特性が異なっ たものとなります。例えば、アナターゼ型 TiO2 (Aldrich 製品番号: **637254**)が、ルチル型 TiO₂(Aldrich 製品番号:637262)に比 べて優れていることが知られています⁸。電子移動の速度論的特 性はナノ粒子充填構造に影響され、高密度充填されたアナターゼ TiO2 膜では、低密度充填されたルチル TiO2 膜よりも速い電子移動 が見られました⁸。また、入射光をより効果的に利用する目的で、 半透明のナノ結晶薄膜と、その上に形成された光散乱層からなる 2 層構造が、TiO2 ナノ粒子の単層構造よりも優れているという報 告があります。散乱効果は、散乱粒子のサイズ、屈折率またはそ の位置によって決まるものとされています。2層構造での粒子サ イズに対する散乱効率が研究され、光散乱は波長依存する反射に 関係していることが明らかとなりました⁹。通常、散乱層にはサイ ズの大きな球形の TiO2 粒子が用いられます。大きな粒子が光散乱 で重要な役割を果たしているにもかかわらず、こうした表面積の 小さい散乱粒子からは、電子生成のような付加的な効果がほとん ど得られません。これは、色素吸着が、ナノ結晶 TiO2 に比べて非 常に低いためであると考えられています。この問題を解決するた めに、ナノサイズのエンボス加工された表面、および中空構造を 有する球状の (nano-embossed hollow spherical, NeHS) 二官 能性 TiO2 が開発され、サイズの大きな通常の TiO2 と比較して優 れた効果が確認されています¹⁰。さらに、TiO2 膜におけるポーラ ス構造の制御も、色素吸着、酸化還元対移動およびホール導体の 浸漬の点で重要です。たとえば、細孔径の制御により、異なる3 つの色素の選択的な吸着が実現しています 11。また、l3-/l-に比べて、 コバルト錯体のようなより大きな酸化還元対の移動では、TiO> 膜 の細孔径および多孔性が非常に重要となります¹²。そのため、高 性能 DSSC の作製には、十分制御されたメソポーラス TiO2 膜が特 に要求されます。

CH₃NH₃Pbl₃ ペロブスカイト光吸収材料を 基盤とした固体型 DSSC

固体型 DSSC は一種の pin 接合型であり、光吸収物質(i) を吸 着した TiO₂(n) が、p型(p) ホール輸送材料(HTM: hole transport material) と接しています。図1は、実際のデバイス断 面の SEM 像を示しています。ブロック層は FTO ガラス表面に堆 積し、FTO と HTM が直接接触するのを妨ぎます。メソポーラス TiO₂ 膜はブロック層の上に形成されますが、ペロブスカイトを増 感剤とした場合には、その膜厚はサブミクロン単位が推奨されま す。また、Spiro-MeOTAD HTM 材料は、メソポーラス膜中へ浸 透します。次に、金または銀などの金属層を、HTM 層の表面に堆 積させます。

図1. 固体型 DSSC の実際のデバイス断面(左)、ペロブスカイト CH₃NH₃Pbl₃ が吸着した TiO₂(中央)、および CH₃NH₃Pbl₃ ペロブスカイ トの結晶構造(右)。図の球は、それぞれ CH₃NH₃⁺(緑)Pb²⁺(灰色)お よびΓ(赤)を表します。

固体型 DSSC の研究は、2012 年にハロゲン化鉛系ペロブスカイト CH₃NH₃Pbl₃を用いることで大きな飛躍を遂げ、疑似太陽光照射 (AM1.5G、1Sun)で9.7%のエネルギー変換効率(PCE)が示さ れました⁶。ペロブスカイト増感剤は、1 ステップ⁶または 2 ステ ップ⁷のコーティングにより TiO2 表面に堆積させることができま す。1 ステップコーティングでは、まず CH₃NH₂ と HI (Aldrich **製品番号:752851**)を反応させて CH₃NH₃I を調製し、これを γ – ブチロラクトン(GBL、Aldrich 製品番号: B103608) また はジメチルホルムアミド (DMF) 中で Pbl2 (Aldrich 製品番号: 203602) と混合した溶液を用いてコーティングします。2 ステッ プコーティングでは、最初に Pbl2 を TiO2 表面にコーティングし、 続いて CH₃NH₃I 溶液に浸漬します。ペロブスカイト型太陽電池 も、長期安定性を示します。9.7%のPCEが報告された2ヵ月後 には、ドープ型ハロゲン化ペロブスカイト(CH₃NH₃Pbl_{3-x}Cl_x)を 用いてより高い変換効率が報告され、CH₃NH₃Pbl₂Cl を吸着した Al₂O₃を使用することで 10% を超える PCE が達成されました¹³。 このデバイスに用いられた Al2O3 は単に足場の役割を果たし、電 子アクセプタとしては機能しません。2013年に PCE はさらに向 上し、CH₃NH₃Pbl₃増感剤およびポリトリアリルアミン(PTAA、 Aldrich 製品番号: 702471) HTM を用いて 12.3% が得られ¹⁴、 さらに 14.1% の認定された変換効率も報告されています 7。ペロ ブスカイト太陽電池は、有機色素太陽電池では一般に見られない 1V 前後の非常に高い光起電力を示します。加えて、高い光電流が サブミクロンの厚さの TiO2 層から得られます。このペロブスカ イト太陽電池の示す極めて優れた太陽電池特性の要因の1つは、 CH₃NH₃Pbl₃の吸光係数が N719 色素に比べて一桁高い点にあり ます¹⁵。もう一つの重要な理由は、ペロブスカイト化合物の電荷 蓄積能にあり(図2)、インピーダンス分光法での静電容量測定で 確認されています¹⁶。ペロブスカイト増感剤の持つ特有のオプト エレクトロニクス特性のため、有機金属ハロゲン化物ペロブスカ イト太陽電池では20%という高い変換効率の可能性が現実的な値 として予測されています 17。

図2. ペロブスカイト CH₃NH₃Pbl₃の密度状態 (density of state、電荷蓄 積に関連)を表す図。FTO とペロブスカイトの間にあるのがブロック層です。

量子ドット増感太陽電池

量子ドット(QD:quantum dot、半導体ナノ結晶)は、高い 吸光係数や調整可能なバンドギャップの他に、MEG(multiple exciton generation、マルチエキシトン生成)の可能性を有する ため、有望な DSSC 増感剤の1つです。可視光のみならず近赤外 光(NIR)も利用するためには、低バンドギャップ QD の設計が 必要です。様々な低バンドギャップ QD の中で、PbS は、18 nm という大きな励起子ボーア半径により高い吸光係数を有し、また 広範囲にわたってバンドギャップの調整が可能なため、最も精力 的に研究されている QD の 1 つです¹⁸。PbS QD は DSSC に利用 され、18.84 mA/cm² の光電流で 3.82% の高い PCE が報告され ています¹⁹。しかし、観測された光電流は理論値をはるかに下回 るものでした。これは、PbSからTiO2への電子注入の速度が遅い ことや PbS が再結合サイトとして機能してしまう点が、非効率的 な電荷分離および回収につながり、PbS QD の性能を限定的なも のにしていると考えられています。最近、我々はドーピングの方 法を検討することでこの問題を解決しました⁵。SILAR(successive ionic layer adsorption and reaction) 法を用いて TiO2 表面に QD を堆積させ、Pb および Hg イオンの共堆積により、Hg がド ープされた PbS QD を作製しました。PbS QD と比較して、Hg をドープした PbS QD は非常に優れた太陽電池特性を示し、特に 光電流は 30 mA/cm² と高い値が得られました。広域 X 線吸収微 細構造(EXAFS: Extended x-ray absorption fine structure)解 析およびフェムト秒過渡吸収測定により、この光学特性の顕著な 向上は、構造変化および Pb と S 間の化学結合性の強化と関係し ていることが明らかとなりました。

図3は、HgをドープしたPbSQD 増感太陽電池の I-V 特性を示 しています。最近、我々は溶液 pH の調整により表面電荷を制御 することにより、酸化物表面上での QD 数を増加させる新たな手 法を提案しました²⁰。Pb²⁺ および Hg²⁺ を含む溶液の pH を 3.2 にした場合、TiO2表面は、TiO2の電荷ゼロ点(pH=6)よりも低 いため、正に帯電します。しかし、トリエタノールアミン(TEA: triethanolamine)を添加することで、pHが 3.2から 8.5 に変化し、 表面は負の電荷を帯びます。陽イオンと負に帯電した TiO2 表面と の強い相互作用のため、QDの吸着量は、TEAの添加により 2.3× 10⁴ µm⁻² から 5.0 x 10⁴ µm⁻² まで増加しました。表面電荷を制 御する方法により、TiO2 薄膜上の QD 濃度が大きく増加したこと で6倍の強さの光電流が得られました。現在、この PbS QD とは 別に、InP、CdS、CdSe および Sb₂S₃ などの量子ドットが、増感 剤もしくは p-n 接合型太陽電池の p 型光吸収材料として研究され ています。無機ナノ結晶の多くが有機増感物質と比較してより高 い吸光係数を示すため、QD 材料は薄膜太陽電池の有望な光吸収 物質として期待されます。

図3. Hg をドープした PbS QD 増感太陽電池の光電流密度 – 電圧曲線。 挿入図は、Hg をドープした PbS QD の IPCE スペクトルおよび結晶構造 を示しています。

要約および今後の展望

有機金属ハロゲン化物ペロブスカイトおよび金属カルコゲニドの 無機増感材料についてレビューしました。メチルアンモニウム鉛 ハロゲン化物ペロブスカイトにより、色素増感太陽電池の分野に 大きな進展が見られました。長期安定性が確認されたこと、およ び酸化物表面にて数秒以内に作製できるため、ペロブスカイト太 陽電池は商業化される可能性が高いでしょう。加えて、ペロブス カイト太陽電池は、20%のPCEが現実的に達成可能であること から、低コストかつ高性能な太陽電池技術になることが期待され ます。QD については、量子サイズ効果を利用したバンドギャッ プの調整により、可視光から近赤外光までの光吸収が可能であり、 きわめて高い光電流密度が得られます。今後は、ペロブスカイト 化合物と NIR 域を吸収する QD との組み合わせによる超高性能太 陽電池の開発が課題となります。

謝辞

本研究は、韓国未来創造科学部(MSIP:the Ministry of Science, ICT & Future Planning)が出資する韓国研究財団(NRF: National Research Foundation of Korea)の支援を受けました。 (Contract No. NRF-2010-0014992, NRF-2012M1A2A2671721, NRF-2012M3A6A7054861 (Nano Material Technology Development Program) and NRF- 2012M3A6A7054861 (Global Frontier R&D Program on Center for Multiscale Energy System))

References

- O'Regan, B.; Gratzel, M., Nature 1991, 353, 737.
- Yella, A.; Lee, H.-W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, Md. K.; Diau, E. W.-G.; Yeh, C.-Y.; Zakeeruddin, S. M.; Grätzel, M., *Science* **2011**, *334*, 629. Bach, U.; Lupo, D.; Comte, P.; Moser, J. E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; (3)
- Grätzel, M. Nature 1998, 395, 583. (4) Chang, J. A.; Im, S. H.; Lee, Y. H.; Kim, H.-j.; Lim, C.-S.; Heo, J. H.; Seok, S. I. Nano Lett.
- 2012, 12, 1863. (5) Lee, J.-W.; Son, D.-Y.; Ahn, T. K.; Shin, H.-W.; Kim, I. Y.; Hwang, S.-J.; Ko, M. J.; Sul, S.; Han,
- H.; Park, N.-G. Sci. Rep. 2013, 3, 1050. (6) Kim, H.-S.; Lee, C.-R.; Im, J.-H.; Lee, K.-B.; Moehl, T.; Marchioro, A.; Moon, S.-J.; Humphry-Baker, R.; Yum, J.-H.; Moser, J. E.; Grtazel, M.; Park, N.-G. Sci, Rep. 2012, 2, 591.
- Burschka, J.; Pellet, N.; Moon, S.-J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; (7) Grätzel, M. Nature 2013, 499, 316.
- (8) Park, N.-G.; van de Lagemaat, J.; Frank, A. J. J. Phys. Chem. B 2000, 104, 8989.
- Koo, H.-J.; Park, J.; Yoo, B.; Yoo, K.; Kim, K.; Park, N.-G. *Inorg. Chim. Acta* **2008**, *361*, 677.
 Koo, H.-J.; Kim, Y. J.; Lee, Y. H.; Lee, W. I.; Kim, K.; Park, N.-G. *Adv. Mater.* **2008**, *20*, 195.
- (11) Lee, K.; Park, S. W.; Ko, M. J.; Kim, K. Park, N.-G. Nat. Mater. 2009, 8, 665
- (12) Kim, H.-S.; Ko, S.-B.; Jang, I.-H.; Park, N.-G. Chem. Commun. 2011, 47, 12637 (13) Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643.
- Noh, J. H.; Im, S. H.; Heo, J. H.; Mandal, T. N.; Seok, S. I. *Nano Lett.* **2013**, *13*, 1764.
 Im, J.-H.; Lee, C.-R.; Lee, J.-W.; Park, S.-W.; Park, N.-G. *Nanoscale* **2011**, *3*, 4088.
- (16) Kim, H.-S.; Mora-Sero, I.; Gonzalez-Pedro, V.; Fabregat-Santiago, F.; Juarez-Perez, E. J.; Park, N.-G.; Bisquert, J. Nat. Commun. 2013, 4, 2242
- (17) Park, N.-G. J. Phys. Chem. Lett. 2013, 4, 2423
- (18) Scholes, G. D.; Rumbles, G. Nat. Mater. 2006, 5, 683.
- (19) Zhou, N. et al. Electrochem, Commun. 2012, 20, 97
- (20) Lee, J.-W.; Hong, J.-D.; Park, N.-G. Chem. Commun. 2013, 49, 6448.

コア型量子ドット

量子ドットの最新情報はaldrich.com/quantumdots をご覧ください。

PbS

Product Name	Description	Fluorescence Emission	Prod. No.
PbS core-type quantum dots	10 mg/mL in toluene oleic acid coated	$\lambda_{em} = 1000 \text{ nm}$	747017-10ML
	10 mg/mL in toluene oleic acid coated	$\lambda_{em} = 1200 \text{ nm}$	747025-10ML
	10 mg/mL in toluene oleic acid coated	$\lambda_{em} = 1400 \text{ nm}$	747076-10ML
	10 mg/mL in toluene oleic acid coated	$\lambda_{em} = 1600 \text{ nm}$	747084-10ML

CdTe

Product Name CdTe core-type quantum do

	Description	Fluorescence Emission	Prod. No.
ots	powder, COOH functionalized	$\lambda_{em} = 510 \text{ nm}$	777986-10MG 777986-25MG
	powder, COOH functionalized	$\lambda_{em} = 520 \text{ nm}$	777935-10MG 777935-25MG
	powder, COOH functionalized	$\lambda_{em} = 570 \text{ nm}$	777943-10MG 777943-25MG
	powder, COOH functionalized	$\lambda_{em} = 610 \text{ nm}$	777951-10MG 777951-25MG
	powder, COOH functionalized	$\lambda_{em} = 710 \text{ nm}$	777978-10MG 777978-25MG
	powder, COOH functionalized	$\lambda_{em} = 770 \text{ nm}$	777994-10MG 777994-25MG

CdSe and CdS

Product Name	Description	Fluorescence Emission	Prod. No.
CdSe-6, quantum dots kit	5 mg/mL in toluene	$\lambda_{em} =$ 480, 520, 560, 590, 610, 640 nm	662550-1KT
CdS-6, quantum dots kit	5 mg/mL in toluene	$\lambda_{\rm em}=380,400,420,440,460,480\;nm$	662593-1KT

コアシェル型量子ドット

InP/ZnS

Product Name	Description	Fluorescence Emission	Prod. No.
InP/ZnS-5 Quantum dots kit	5×5 mg/mL in toluene, stabilized with oleylamine ligands	$\lambda_{em} = 530-650 \text{ nm}$	777285-1KT
InP/ZnS quantum dots	5 mg/mL in toluene, stabilized with oleylamine ligands	$\lambda_{em} = 530 \text{ nm}$	776750-5ML
	5 mg/mL in toluene, stabilized with oleylamine ligands	$\lambda_{em} = 560 \text{ nm}$	776793-5ML
	5 mg/mL in toluene, stabilized with oleylamine ligands	$\lambda_{em} = 590 \text{ nm}$	776769-5ML
	5 mg/mL in toluene, stabilized with oleylamine ligands	$\lambda_{em} = 620 \text{ nm}$	776777-5ML
	5 mg/mL in toluene, stabilized with oleylamine ligands	$\lambda_{em} = 650 \text{ nm}$	776785-5ML

CdSe/ZnS

Product Name	Description	Fluorescence Emission	Prod. No.
CdSe/ZnS core-shell type quantum dots	stabilized with octadecylamine ligands, solid	$\lambda_{em} = 520 \text{ nm}$	748021-10MG 748021-25MG
	stabilized with octadecylamine ligands, solid	$\lambda_{em} = 540 \text{ nm}$	748056-25MG 748056-10MG
	stabilized with octadecylamine ligands, solid	$\lambda_{em} = 560 \text{ nm}$	748080-25MG 748080-10MG
	stabilized with octadecylamine ligands, solid	$\lambda_{em} = 580 \text{ nm}$	748129-10MG 748129-25MG
	stabilized with octadecylamine ligands, solid	$\lambda_{em} = 600 \text{ nm}$	748099-25MG 748099-10MG
	stabilized with octadecylamine ligands, solid	$\lambda_{em} = 620 \text{ nm}$	790192-25MG 790192-10MG
	stabilized with octadecylamine ligands, solid	$\lambda_{em} = 630 \text{ nm}$	790206-25MG 790206-10MG

合金型量子ドット

Product Name	Description	Fluorescence Emission	Prod. No.
CdSeS/ZnS alloyed quantum dots kit	5×1 mg/mL in toluene, diameter 6 nn 5×1 mg/mL in H2O, diameter 6 nm, COOH functionalized	$\lambda_{\rm em} =$ 490, 525, 575, 630, 665 nm $\lambda_{\rm em} =$ 490, 525, 575, 630, 665 nm	753823-1KT 753904-1KT
CdSeS/ZnS alloyed quantum dots	1 mg/mL in toluene, diameter 6 nm	$\lambda_{em} = 450 \text{ nm}$	753742-5ML 753742-25ML
	1 mg/mL in toluene, diameter 6 nm	$\lambda_{em} = 490 \text{ nm}$	753750-5ML 753750-25ML
	1 mg/mL in toluene, diameter 6 nm	$\lambda_{em} = 525 \text{ nm}$	753769-5ML 753769-25ML
	1 mg/mL in toluene, diameter 6 nm	$\lambda_{em} = 540 \text{ nm}$	753777-5ML 753777-25ML
	1 mg/mL in toluene, diameter 6 nm	$\lambda_{em} = 575 \text{ nm}$	753785-5ML 753785-25ML
	1 mg/mL in toluene, diameter 6 nm	$\lambda_{em} = 630 \text{ nm}$	753793-5ML 753793-25ML
	1 mg/mL in toluene, diameter 6 nm	$\lambda_{em} = 665 \text{ nm}$	753807-5ML 753807-25ML
	$1\mbox{ mg/mL}$ in $\mbox{H}_2\mbox{O},$ diameter 6 nm, COOH functionalized	$\lambda_{em} = 490 \text{ nm}$	754226-1ML 754226-5ML
	$1\mbox{ mg/mL}$ in $\mbox{H}_2\mbox{O},$ diameter 6 nm, COOH functionalized	$\lambda_{em} = 525 \text{ nm}$	753831-1ML 753831-5ML
	$1\mbox{ mg/mL}$ in H_2O, diameter 6 nm, COOH functionalized	$\lambda_{em} = 540 \text{ nm}$	753866-1ML 753866-5ML
	$1\mbox{ mg/mL}$ in $\mbox{H}_2\mbox{O},$ diameter 6 nm, COOH functionalized	$\lambda_{em} = 575 \text{ nm}$	753874-1ML 753874-5ML
	1 mg/mL in $\mathrm{H_2O},$ diameter 6 nm, COOH functionalized	$\lambda_{em} = 630 \text{ nm}$	753882-1ML 753882-5ML
	1 mg/mL in $\rm H_2O,$ diameter 6 nm, COOH functionalized	$\lambda_{em} = 665 \text{ nm}$	753890-1ML 753890-5ML

ハロゲン化鉛系材料用前駆体

無機材料の検索は、aldrich.com/metalceramic-jpの「周期表検索」をご利用ください。

Product Name	Composition	Purity	Form	Prod. No.
Lead(II) acetate trihydrate	$Pb(CH_3CO_2)_2 \cdot 3H_2O$	≥99.99% trace metals basis	solid	467863-50G 467863-250G
Lead(II) bromide	PbBr ₂	99.999% trace metals basis	powder	398853-5G
Lead(II) carbonate	PbCO ₃	≥99.99% trace metals basis	powder and chunks	335169-25G
Lead(II) carbonate basic	(PbCO ₃) ₂ ·Pb(OH) ₂	-	powder	243582-100G 243582-2.5KG
Lead(II) chloride	PbCl ₂	99.999%	beads	449865-5G
Lead(II) iodide	Pbl ₂	99.999% trace metals basis	beads	554359-5G
Lead(II) iodide	Pbl ₂	99.999% trace metals basis	solid	203602-50G
Lead(II) sulfate	PbSO ₄	99.995% trace metals basis	powder and chunks	254258-10G 254258-50G

酸化チタンナノ材料

ナノ材料の最新情報は、aldrich.com/nano-jp をご覧ください。

Product Name	Description	Purity	Form	Prod. No.
Titanium(IV) oxide	particle size 21 nm (TEM) surface area 35-65 m²/g (BET)	≥99.5% trace metals basis	nanopowder	718467-100G
Titanium(IV) oxide, anatase	particle size <25 nm spec. surface area 45-55 m²/g	99.7% trace metals basis	nanopowder	637254-50G 637254-100G 637254-500G
Titanium(IV) oxide, mixture of rutile and anatase	particle size <50 nm (XRD) particle size <100 nm (BET)	99.5% trace metals basis	nanopowder	634662-25G 634662-100G
Titanium(IV) oxide, mixture of rutile and anatase	particle size ~21 nm (primary particle size of starting nanopowder) particle size <250 nm (DLS) BET surf. area 50 m²/g (BET surface area of starting nanopowder)	99.9% trace metals basis	nanoparticles paste	700355-25G
Titanium(IV) oxide, mixture of rutile and anatase	particle size <150 nm (DLS) particle size ~21 nm (primary particle size of starting nanopowder)	99.9% trace metals basis	dispersion nanoparticles	700347-25G 700347-100G
Titanium(IV) oxide, mixture of rutile and anatase	particle size ~15 nm (primary particle size of starting nanopowder) particle size <100 nm (DLS) BET surf. area 90 m²/g (BET surface area of starting nanopowder)	99.9% trace metals basis	dispersion nanoparticles	700339-100G
Titanium(IV) oxide, rutile	particle size <100 nm spec. surface area 130-190 m²/g	99.5% trace metals basis	nanopowder	637262-25G 637262-100G 637262-500G
Titanium(IV) oxide, brookite	particle size <100 nm	99.99% trace metals basis	nanopowder	791326-5G
Titanium(IV) oxide nanowires	diam. × L: ~10 nm × 10 µm	-	powder (nanowires)	774529-500MG
Titanium(IV) oxide nanowires	diam. \times L: ~100 nm \times 10 μm	÷	powder (nanowires)	774510-500MG

Ή

Aldrich Materials Science Web Portal

- 新製品情報、最新テクノロジーの解説
- ニュースレター「Material Matters™」、「材料科学の 基礎」のダウンロード
- 製品検索(構造式、化学名、CAS 番号など)
- Web製品カタログ
- ニュースレター、E-mailニュース定期配信の申し込み

Energy

リチウムイオン電池・燃料電池用材料、水素貯蔵材料、金属有機構造体(MOF) 蛍光材料、熱電材料、ナノ材料

Electronics

ナノワイヤ、プリンテッドエレクトロニクス用インク、OPV・OFET・OLED用材料 ナノ粒子分散液、カーボンナノチューブ、グラフェン、PVD・CVD用前駆体材料

Biomedical

薬物送達、組織工学用材料、PEG、生分解性ポリマー、機能性ナノ材料、ブロック共重 合体、デンドリマー、ナノクレイ

www.aldrich.com/ms-jp

©2014 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA, SAFC, SIGMA-ALDRICH, ALDRICH, SUPELCO, and SAFC Hitech are trademarks of Sigma-Aldrich Co. LLC, registered in the US and other countries. FLUKA is a trademark of Sigma-Aldrich GmbH, registered in the US and other countries. Material Matters is a trademark of Sigma-Aldrich Co. LLC. Sigma brand products are sold through Sigma-Aldrich, Inc. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see product information on the Sigma-Aldrich website at www.sigmaaldrich.com

本記載の製品および情報は2014年9月1日現在の情報であり、収載の品目、製品情報、価格等は予告なく変更される場合がございます。/最新の情報は、弊社Webサイト (sigma-aldrich.com/japan)をご覧ください。/掲載価格は希望納入価格(税別)です。詳細は販売代理店様へご確認ください。/弊社の試薬は試験研究用のみを目的として 販売しております。医薬品原料並びに工業用原料等としてご購入の際は、こちらのWeb サイト(sigma.com/safc-jp)をご覧ください。

〒140-0002 東京都品川区東品川2-2-24 天王洲セントラルタワー4F 製品に関するお問い合わせは、弊社テクニカルサポートへ TEL:03-5796-7330 FAX:03-5796-7335 E-mail:sialjpts@sial.com 在庫照会・ご注文方法に関するお問い合わせは、弊社カスタマーサービスへ

TEL:03-5796-7320 FAX:03-5796-7325 E-mail:sialjpcs@sial.com http://www.sigma-aldrich.com/japan お問い合わせは下記代理店へ

SAJ1790 2014.9

