Material Matters

Volume 9, Number 1

フレキシブルおよび プリンタブルエレクトロニクス材料

Printing by Innovation

高性能プリンテッドエレクトロニクス用 反応性銀インク

グラフェン透明導電性電極

色素増感太陽電池に関する知見 およびその構成材料 溶液プロセスにより作製される 有機太陽電池用低分子ドナー材料の開発

ジケトピロロピロールおよび チエノチオフェンを用いた 高性能半導体ポリマー

SAJ1766

はじめに

2014 年の Material Matters™第1号では、フレキシブルおよびプリンテッ ドエレクトロニクス用材料を特集してお届けします。フレキシブル・プリン テッドエレクトロニクスは、微細な電子デバイスから大面積エレクトロニク スまでの非常に多くの製品に渡って用いられる幅広い技術を対象とします。 印刷技術の進歩は、プラスチック・紙・布といったフレキシブルな基板上への、 エレクトロニクスのハイスループットかつ大量生産を低コストで可能にしま した。そのため、以前は夢に過ぎなかった日常品や一般施設へのプリンテッ ド・フレキシブルエレクトロニクスの本格的な展開が期待されています。

Aldrich Materials Science

インクジェット、グラビア、フレキソおよびオフセットなどをはじめとする、様々な印刷方式に向 けた機能性材料が開発、最適化されています。ディスプレイ、太陽電池パネル、RFID タグなどの 電子部品の印刷には、導電性または半導体材料が必要です。導電性インクには、金属系または導電 性ポリマー系インクがあります。半導体材料としては、半導体ポリマー、有機低分子材料、炭素ナ ノ材料が利用されています。本号では、フレキシブルおよびプリンテッドエレクトロニクス研究で 注目されている、無機金属導電性材料(特に銀)と、炭素ナノ材料、低分子有機材料、ポリマーと いった有機エレクトロニクス材料について解説します。

最初の論文では、S.Brett Walker、Bok Yeop Ahn および Jennifer A. Lewis(米国)が、高性能プ リンテッドエレクトロニクスの電極として用いることができる反応性銀インクについて解説しま す。この反応性銀インクをインクジェット印刷することで、低コストのポリマー基板上に銀電極を パターニングすることができます。インクの噴射を最適化するために、化学的修飾によってインク 粘度および表面張力が調整され(それぞれ 5 ~ 50 mPa⋅s、20 ~ 50 mN/m)、低温焼結(約 100℃) で高い導電性を達成します。

2番目の論文では、Kehan Yu および Junhong Chen(米国)が、最近のグラフェン透明導電性電 極の理論からアプリケーションまでを概説します。グラフェンの各調製技術の長所と短所を、溶液 プロセスと CVD 法を対比させて論じています。グラフェンと他のナノ材料(例:導電性フィラー としてのカーボンナノチューブ)を組み合わせたグラフェン系ハイブリッド型透明導電性電極を取 り上げ、その優れた性能をご紹介します。

3 番目の論文では、Hans Desilvestro、Yanek Hebting、Mikael Khan および Damion Milliken(豪 州)が、チタニア半導体、ルテニウム系色素、電解液、白金触媒および銀導電体など、色素増感太 陽電池デバイスを作製するための主要材料について概説します。本レビューでは、各材料とそれら の重要なパラメータとの相互作用について詳細に述べます。

4 番目の論文では、Abby-Jo Payne および Gregory C.Welch(カナダ)が、ここ数年で大きな注目 を集めている低分子系有機太陽電池の研究を取り上げ、その構造的特長を概説します。低分子化合 物は、太陽電池に用いた場合、明確な構造をもつためにバッチ間のばらつきが抑えられる(純度の 向上が容易、かつ特性が分子量に依存しない)という点で、ポリマー材料に対して優位といえます。 さらに、電子エネルギー準位、光吸収および自己組織化傾向を、より体系的に調整することで、デ バイス特性を最大限に高めることができます。

最後に、Tony Wigglesworth、Yiliang Wu、Cuong Vong および Matthew Heuft(カナダ)が、 溶液プロセスによる OFET デバイスへのジケトピロロピロール - チエノチオフェン (DPP-TT) 共重 合体の応用について述べます。DPP-TT 共重合体は溶液処理が可能であり、また強いドナーーアク セプタ相互作用によって優れた凝集特性を示すため、プリンテッドエレクトロニクス用材料として 最も有望な半導体材料の一つです。

表紙について

フレキシブルおよびプリンテッドエレクトロニクスは、機能性材料を従来の印刷技術と組み合わせ ることにより、エレクトロニクス分野において様々な創造的アプリケーションを確実に実現できる 最先端の技術です。本号の表紙は、フレキシブルで印刷技術で作製された部品からなる理想的なデ バイスを表しており、プリンテッドソーラーパネルで変換された電力が、プリンタブル回路を通じ てフレキシブルディスプレイに供給されます。

Material Matters Vol. 9, No. 1

ご注文:

最寄の試薬代理店にご注文ください。代理店 がご不明の場合は、弊社カスタマーサービス sialjpcs@sial.com へお問合せください。

お問合せ:

価格、納期については、弊社カスタマーサ -ビスまでお問合せください。日本語 Web サイト www.sigmaaldrich.com/japan でも、各製品の価格や国内在庫の有無など をご確認いただけます。製品に関する技術 的なお問い合わせは、テクニカルサポート sialjpts@sial.com へお問合せください。

本カタログに掲載の製品及び情報は2014年 8月現在の内容であり、収載の品目、製品情 報等は予告なく変更される場合がございま す。予めご了承ください。

オンライン

QRコードを読み取ると、 Material Matters バックナンバーのPDFを ご覧いただけます。 aldrich.com/mscatalog-jp

iPad版(英語)もご利用ください。 aldrich.com/mm

目次

Articles

高性能プリンテッドエレクトロニクス用反応性銀インク	2
グラフェン透明導電性電極	6
色素増感太陽電池に関する知見およびその構成材料	14
溶液プロセスにより作製される有機太陽電池用低分子ドナー材料の開発	23
ジケトピロロピロールおよびチェノチオフェンを用いた高性能半導体ポリマー	33

Featured Products

銀インク・銀ナノ粒子	4
A selection of silver inks, nanoparticle and nanowire dispersions for printing	
グラフェン・酸化グラフェン(GO)	10
A list of monolayer graphene films and graphene oxide dispersions	
カーボンナノチューブ(CNT)	10
A list of CNTs and single-walled CNT inks	
有機導電性インク・インクキット	12
A selection of organic conductive inks and ink kits for use in printed electronics	
ITO透明導電性基板	13
A list of ITO coated PET and glass substrates	
FTO透明導電性基板	13
A list of FTO coated glass substrates	
	18
A selection of metal complex and metal-free dyes for use in dye-sensitized solar cells	
ナノ粒子	21
A selection of TiO ₂ and ZnO nanoparticles for use in dye-sensitized solar cells	
ペースト	21
Silver, titania and platinum pastes for use in dye-sensitized solar cells	
電解液	22
A selection of liquid electrolytes for use in dye-sensitized solar cells	
有機ホール輸送材料	22
A selection of organic hole transport materials for use in dye-sensitized solar cells	
p型低分子有機半導体	28
A selection of p -type small molecular semiconductors for use in flexible electronics	20
n型低分子有機半導体	20
A selection of <i>n</i> -type small molecular semiconductors for use in flexible electronics	50
	21
A selection of fullerene derivatives for use in flexible electronics	51
n刑半道休ポリフー	24
A selection of <i>n</i> -type polymeric semiconductors for use in flexible electronics	54
n 刊半道体ポリフ_	26
A selection of <i>n</i> -type polymeric semiconductors for use in flexible electronics	30

Your Materials Matter

Buy Conton

Bryce P. Nelson, Ph.D. Aldrich Materials Science Initiative Lead

「こんな化合物を探している」、「こんな製品があれば便利」といった お問い合わせやご要望はございませんか? 皆様からの新製品のご提案をお待ちしております。 sialjpts@sial.com までお気軽にお問い合わせください。

VTT Technical Research Centre of Finlandの Marja Vilkman 博士によ り、フレキシブルエレクトロニクス用材料として還元型酸化グラフェン (rGO、Aldrich製品番号:777684)の製品化のご提案をいただきました。 インクジェット印刷は、大面積でフレキシブルなデバイスの作製にとっ て最も有望な技術の一つです。トランジスタ、太陽電池デバイス、有機 EL およびディスプレイなど、多岐にわたる構成部品を印刷することがで きます。rGO のようなグラフェン製品は、取扱いが容易で、優れた導電 性と安定性、印刷プロセス適合性を有しているため、プリンテッドエレ クトロニクスへの利用に大きな可能性があります¹⁻³。

References

- Grande, Lorenzo; Chundi, Vishnu Teja; Wei, Di; Bower, Chris; Andrew, Piers; Ryhänen, Tapani Particuology, 2012, 10, 1-8.
- (2) Torrisi, Felice; Hasan, Tawfique; Wu, Weiping; Sun, Zhipei; Lombardo, Antonio; Kulmala, Tero S.; Hsieh, Gen-Wen; Jung, Sungjune; Bonaccorso, Francesco; Paul, Philip J.; Chu, Daping; Ferrari, Andrea C. ACSNano, 2012, 6, 2992-3006.
- (3) Secor, Ethan B.; Prabhumirashi, Pradyumna L.; Puntambekar, Kanan; Geier, Michael L.; Hersam, Mark C. J. Phys. Chem. Lett., 2013, 4, 1347-1351.

Reduced graphene oxide

BET surface area: 450 m²/g

777684-250 MG 250 mg 777684-500 MG 500 mg

高性能プリンテッドエレクトロニクス用 反応性銀インク

S. Brett Walker,¹² Bok Yeop Ahn,^{3*} Jennifer A. Lewis^{13,4} ¹Materials Science and Engineering Department University of Illinois at Urbana-Champaign, Urbana, IL 61801 ²Electroninks Incorporated, Champaign, IL 61820 ³Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138 ⁴Harvard School of Engineering and Applied Science, Cambridge, MA 02138 Email: jalewis@seas.harvard.edu

はじめに

太陽電池¹、ディスプレイ²、センサー³およびバイオメディカルデバイ ス⁴などのアプリケーションにおいて、導電性電極のパターニング技術 の向上が求められています。中でも、導電性銀電極は高い導電性および 耐酸化性を示すため、これらアプリケーションで広く利用されています。 しかし、この銀粒子インクは、複雑な合成経路⁵、および比較的高いポ リマー添加剤濃度⁶を必要とすることが多く、大部分の有機基板には適 さないような高温でアニールしなければなりません。こうした制限を克 服するため、容易に合成することが可能で、最適なアニール温度で高い 導電性を示す銀前駆体インクが開発されています⁷⁻¹²。

銀前駆体インク

これまで3つのタイプの銀前駆体インクが報告されています。一つは、 対イオンまたは熱分解性カルバミン酸塩複合体の脱カルボキシル化に基 づいており、バルク銀に対して1桁以内の違いの導電率が得られます⁸。 もう一つのタイプは、限界温度を超えた温度での、還元剤の熱活性化に 基づいています⁹。これら両インクとも、十分な導電性を達成するため には、120℃を上回るアニール温度を必要とします。最近、我々は反応 性銀インクと呼ばれる新しいタイプのインクを開発しました¹⁰。このイ ンクでは、酢酸銀とギ酸およびアンモニアを用いた、改良したトレンス 試薬の反応を利用しています。90℃という低いアニール温度で高い導電 性を示す半面、化学的性質に弱点があり、アニールの間に著しい気体発 生、すなわち泡形成が見られます。また、その低い粘度(2 mPas)お よび高い表面張力(>60 mN/m)といった点も、インクジェット印刷 での利用を極めて困難にしています。 インクジェット印刷用として設計されるインクは、厳しい物理特性要件 を満たさなければなりません。確実に噴射させるためには、オーネゾル ゲ(Oh)数(粘性力を慣性力および表面張力と関連づける無次元数)が 特定の値の範囲に収まっていなければなりません。Oh数は次式で表さ れます。

ここで、*We*はウェーバー数、Re はレイノルズ数です¹¹。一般的に、 安定な液滴形成に必要な値は 0.1 ~ 1 と考えられています。さらに Derby¹¹は、液滴形成に必要な最小限の速度(*U*min)が次式で得られる ことを報告しています。

$$v_{\min} = \sqrt{\frac{4\gamma}{\rho d_n}}$$

ここで、γ、ρ、dnは、それぞれ表面張力、密度、ノズル直径です。典型的なインクジェット印刷機の励起電圧(<40 V)で、初期の銀反応性 インクを用いてこの最小限の液滴速度を得ることは、その低い粘度およ び高い表面張力のために困難でした。

改良型反応性銀インク

本稿では、噴出最適化のために第一級アミンを用いた改良型反応性銀イ ンク(Aldrich 製品番号:745707)について報告します。合成手順は以 下のとおりです。まず酢酸銀を、第一級アミン、プロピレングリコール および他の湿潤剤からなる水溶液に溶解します。氷冷した水浴中で、得 られた溶液にギ酸(もしくはギ酸アンモニウム)を加え、孔径 0.2 µm のフィルタ付きシリンジで濾過します。図1Aに合成後のインク(銀ナ ノ粒子生成前)を示します。第一級アミンを用いずに得られる無色透明 なインクとは異なり、改良型インクには Ag - アミン複合体が存在する ため(図1B)、わずかに黄色を呈します。紫外可視スペクトルでは400 ~ 425 nm 域での吸収が見られることから、銀と第一級アミンがギ酸と 反応していることを示しています(図1C)。この改良型インクは室温で 比較的安定であり、50~60℃に加熱されるまで、銀粒子が急速に形成 されることはありません。図1Dは、80℃、100℃および120℃で加熱 された改良型インクの、アニール時間に応じた熱重量分析(TGA)デー タを表しています。これらの曲線は、改良型インクが約13 wt.% の銀を 含むことを示しています。特に120℃では、揮発性物質は数分以内に完 全に除去され、アニールの間に泡形成は見られません。

図1 A) 13 wt.% の固体からなる改良型反応性銀インクの写真。B) 改良型イン クの主な成分。C) 改良型インクの紫外可視スペクトル。D) アニール時間に応 じた各温度で測定した改良型インクの熱重量分析。

改良型反応性銀インクの粘度は 10 mPa·s であり、初期のインクと比較 して 5 倍に増加しています¹⁰。さらに、より大きな側鎖を有するアルキ ルアミンを用いることで、改良型インクの粘度および表面張力をそれぞ れ 5 ~ 50 mPa·s、20 ~ 50 mN/m の幅広い範囲で系統的に調整するこ とができます。そのため、インクジェットやスピンコート、エアロゾル、 electrohydrodynamic jet、ロール to ロール印刷をはじめとするさまざ まなパターニング技術に対応した改良型反応性銀インクの調製が可能で す。

10 pL カートリッジを使用してダイマティックス・マテリアル・プリン ター(Fuji Dimatix)でインクジェット印刷した際の、ノズルからの液 滴形成の時系列変化を図 2A に示しました。パターン忠実度を減少させ るサテライト滴(satellite droplet)の形成を最小限に抑えるように、波 形および励起電圧を選択します。図 2B および図 C は、酢酸セルロース 基板に 80 µm から 1.5 cm までの様々な線幅でパターニングされた銀電 極の、光学顕微鏡画像および走査型電子顕微鏡(SEM)画像を示してい ます。適切なアルキルアミン配位子を選択することにより、改良型反応 性銀インクは表面張力の減少、粘着性の増加を示し、ポリマー添加剤を 使用しなくても泡はごくわずかしか発生しません。

図2 A) 10 pL カートリッジから形成された液滴の画像。液滴の撮影間隔は 10 μ秒。**B**) 各ラインを 100℃、2 分間アニールすることで得られた、酢酸セルロース上に形成された導電性パターンの画像。**C**) B) で生成した最も細いラインの顕微鏡写真(上:70 μm、中:110 μm、下:180 μm)。

印刷の層数(回数)に応じた微細構造の変化を図3Aに示しました。一 回の印刷で作製される層の特徴は、多孔性、導電性(バルク銀の約10%) および半透明性です。導電率は、一層あたり約20%増加するため、5層 印刷でバルクとほぼ同じ導電率を示します(図3B)。一方、層の高さは 積層数が増えても(最大5層)、比較的一定の値を示します。SEM画像 では、追加のインクが堆積するにつれて、過剰な銀が一定領域の下層に ある孔を埋めるため、パターニングされた電極は高密度になります。5 層が堆積した後、膜厚は約350 nmまで増加します。そのため、パター ニングされた電極中の空隙が満たされた後は、層の高さは増加していく のみです。これとは対照的に、銀ナノ粒子インクから生成されるプリン テッド電極の場合、積層しても多孔性のままです。

図3 A) 異なる積層数の銀微細構造の SEM 画像。B) 堆積層の数と、電気抵抗(三角形) および堆積層の高さ(正方形)の関係

単層の銀電極はかなりの導電性を有するため、ライン間隔が 0.5 mm の 単層格子パターン(25 mm × 25 mm、線幅 80 µm)をポリエチレンテ レフタレート(PET)基板上に印刷しました(図 4A および B)。図 4A は、 導電性単層格子の高い透明度を示しており、印刷された格子を通して下 の文字を鮮明に見ることができます。図 4C は、ライン間隔がそれぞれ 0.5、1.0 および 2.0 mm の堆積した格子パターンの透過率を表しており、 2 mm の格子間隔で 90%を超える透過率が得られています¹²。ライン 幅はインクー滴に相当し、水平および垂直方向にパターニングされまし た。このことは、湿式の場合と同様に改良型反応性銀インクが確実に噴 出され、低コストのプラスチック基板上への正確なパターン忠実性が維 持されたことを示しています。

図4 A) PET 基板上にライン間隔 0.5 mm、線幅 80 µm でインクジェット印刷 された透明導電性正方格子(25 mm × 25 mm)の光学顕微鏡画像、および B) SEM 画像。C) 導電性格子の格子間隔ごとの紫外可視透過率。

要約

適切なアルキルアミン配位子を用いて反応性銀インクを改良すること で、適度なアニール温度(< 120℃)で電気的特性を損なうことなく、 インクジェット印刷によるパターニングをかなり改善できることが示さ れました。粘度および表面張力を幅広い範囲で調整することで、多くの パターニング技術を利用することができるため、この改良型反応性銀イ ンクはプリンテッドエレクトロニクスに新たな道を開くものと期待され ます。

謝辞

本研究は、米国海軍研究所の Multi-University Research Initiative (MURI Award N00014-11-1-0690)の支援を受けて行われました。材料の微量 分析は、イリノイ大学アーバナ・シャンペーン校の Frederick Seitz MRL センターにて行いました。

References

- (a) Galagan, Y., Andriessen, R., Rubingh, E., Grossiord, N., Blom, P., Veenstra, S., Verhees, W. and Kroon, J. LOPE-C, 2010, 88;
 - (b) Kaydanova, T., van Hest, M. F.A.M., Miedaner, A., Curtis, C.J., Alleman, J.L., Dabney, M.S., Garnett, E., Shaheen, S., Smith, L., Collins, R., Hanoka, J.J., Gabor, A.M. and Ginley, D. NREL, 2005, 1; (c) Horteis, M., Grote, D., Binder, S., Filipovic, A., Schmidt, D. and Glunz, S.W. *IEEE*, 2009, 000060.
- (2) (a) Feng, H., Cheng, R., Zhao, X., Duan, X. and Li, J. *Nat. Commun.*, 4:1539, 1;
 (b) Wu, H., Hu, L., Rowell, M.W., Kong, D., Cha, J.J., McDonough, J.R., Zhu, J., Yang, Y., Mcgehee, M.D. and Cui, Y. *Nano Lett.*, 2010, *10*, 4242;
- (c) Doggart, J., Wu, Y., Liu, P. and Zhu, S. ACS *Appl. Mater. Interfaces*, **2010**, *2*, 2189.
 (a) Wang, C.-T., Huang, K.-Y., Lin, D.T.W., Liao, W.-C., Lin, H.-W. and Hu, Y.-C. Sensors, **2010**, *10*, 5054:
- (b) Liu, X., Mwangi, M., Li, X., O'Brien, M. and Whitesides, G.M. Lab Chip, 2011, 11, 2189.
 (4) (a) Singh, S.K., Singh, M.K., Kulkarni, P.P., Sonkar, V.K., Grácio, J.J.A. and Dash, D. ACS Nano,
- 2012, 6, 2731;
 (b) Tian, B., Liu, J., Dvir, T., Jin, L., Tsui, J.H., Qing, Q., Suo, Z., Langer, R., Kohane, D.S. and Lieber, C.M. *Nat. Mater.*, 2012, *11*, 986;
 (c) Kim, D.-H., Wang, S., Keum, H., Ghaffari, R., Kim, Y.-S., Tao, H., Panilaitis, B., Li, M., Kang, Z., Omenetto, F., Huang, Y. and Rogers, J.A. *Small*, 2012, *2770*.
- (5) (a) Lee, S.-H., Shin, K.-Y., Hwang, J.Y., Kang, K.T. and Kang, H.S. J. Micromech. Microeng., 2008, 18, 075014;
- (b) Meier, H., Löffelmann, U., Mager, D., Smith, P.J. and Korvink J.G., *Phys. Status Solidi A*, 2009, 206, 1626;
 (c) Shankar, R., Groven, L., Amert, A., Whites, K.W. and Kellar, J.J. J. Mater. Chem.,

(c) sharkar, R., Gloven, L., Ameri, A., Wintes, K.W. and Kenar, J.J. Mater. Chem., 2011, *21*, 10871.

- (6) (a) Ah, B.Y., Duoss, E.B., Motala, M.J., Guo, X., Park, S.-I., Xiong, Y., Yoon, J., Nuzzo, R.G., Rogers, J.A. and Lewis, J.A. Science, 2009, 323, 1590.
 (b) Richards, V.N., Rath, N.P. and Buhro, W.F. Chem. Mater. 2010, 22, 3556:
- (b) Richards, V.N., Rath, N.P. and Buhro, W.E. *Chem. Mater.*, **2010**, *22*, 3556;
 (c) Wang, H., Qiao, X., Chen, J., Wang, X. and Ding, S. *Mater. Chem. Phys.*, **2005**, *94*, 449.
 (7) Perelaer, J., Smith, P.J., Mager, D., Soltman, D., Volkman, S.K., Subramanian, V., Korvink, J.G. and Cheb, M.G. and Schubert M.C. and M. Schubert, M.G. and Schubert, M.G.
- Schubert, U.S. J. Mater. Chem., 2010, 20, 8446.
 (a) Wu, Y., Li, Y. and Ong, B.S. J. Am. Chem. Soc., 2006, 128, 4202;
 (b) Lee, J.J., Park, J.C., Kim, M.H., Chang, T.S., Kim, S.T., Koo, S.M., You, Y.C. and Lee, S.J. J. Ceram. Processing Res., 2007, 8, 219;
 (c) Jahn, S.F., Jakob, A., Blaudeck, T., Schmidt, P., Lang, H. and Baumann, R.R. Thin Solid Films,
- 2010, 518, 3218; (d) Yasin, T. and Baktur, R. Antennas and Propagation Society International Symposium

(APSURSI), 2010 IEEE, **2010**, 1; (e) Y. Wu, Y. Li, and B. Ong, J. Am. Chem. Soc., **2007**, 129, 1862.

- (9) Chen, S.-P., Kao, Z.-K., Lin, J.-L. and Liao, Y.-C. ACS Appl. Mater. Interfaces, 2012, 121207111315002
- (10) Walker, S.B. and Lewis, J.A. J. Am. Chem. Soc., 2012, 134, 1419.
- Derby, B. Annu. Rev. Mater. Res., 2010, 40, 395.
 (a) Layani, M., Gruchko, M., Milo, O., Balberg, I., Azulay, D. and Magdassi, S. ACS Nano, 2009, 3, 3537;
 - (b) Ahn, B.Y., Lorang, D.J. and Lewis, J.A. Nanoscale, 2011, 3, 2700.

銀インク

導電性インクの最新情報は aldrich.com/inks をご覧ください。

Name	Silver Content	Viscosity	Form	Prod. No.
Reactive silver ink	12-14 wt. %	10-12 cP	liquid	745707-25ML
Silver nanoparticle ink	31-35 wt. %	3-12 cP	liquid	792195-5G
Silver nanoparticle ink	55-60 wt. %	7-12 cP	liquid (metallic blue)	792225-5G
Silver nanoparticle ink	64-66 wt. %	9-12 cP	liquid (metallic blue)	792209-5G
Conductive silver printing ink, resistivity 30 - 35 $\mu\Omega\text{-cm}$	65-75%	6000-9000 mPa·s	paste	791903-10G 791903-20G
Conductive silver printing ink, resistivity 5-6 $\mu\Omega$ cm	75-85%	3000 mPa·s	paste	791873-10G 791873-20G
Conductive silver printing ink, resistivity 9 - 10 $\mu\Omega\text{-cm}$	75-85%	9000-12000 mPa·s	paste	791881-10G 791881-20G

銀ナノ粒子分散液

ナノ粒子については aldrich.com/nano-jp をご覧ください。

Particle Size	Concentration	Applications	Prod. No.
particle size ≤10 nm	50-60 wt. % in tetradecane	printing on ITO and glass	736511-25G
		Curing Temperature: Above 400°C	736511-100G
particle size ≤10 nm	50-60 wt. % in tetradecane	printing on polyimide films	736503-25G
		Curing Temperature: 250℃	736503-100G
particle size ≤50 nm	30-35 wt. % in triethylene glycol monoethyl ether	printing on ITO and glass	736481-25G
		Curing Temperature: Above 400°C	736481-100G
particle size ≤50 nm	30-35 wt. % in triethylene glycol monomethyl ether	printing on ITO films	736473-25G
		Curing Temperature: 180 - 200°C	736473-100G
particle size ≤50 nm	30-35 wt. % in triethylene glycol monomethyl ether	printing on plastic films	736465-25G
		Curing Temperature: 100 - 150°C	736465-100G

銀ナノワイヤ

ナノワイヤの最新情報は aldrich.com/nanowires をご覧ください。

Diam. × L	Concentration	Form	Prod. No.
60 nm × 10 μm	0.5% in isopropanol	liquid (suspension)	739421-25ML
115 nm × 20-50 μm	0.5% in isopropanol	liquid (suspension)	739448-25ML
120-150 nm × 20-50 μm	0.5% in isopropanol	liquid (suspension)	778095-25ML

PRODUCT HIGHLIGHT

Single-layer Graphene on PET

Providing the Ultimate Properties of Pristine Graphene

- 単層グラフェン、PET基板(1x1インチ*、745863)
- 単層グラフェン、PET基板(2x2インチ*、745871)
- 厚さが高度に制御された均一なグラフェン膜
- 高い光透過率、導電性 (>95% Transmittance; ~500 Ω/sq.)
 ※グラフェン酸自体のサイズ

PET基板スペック(代表値)

厚さ	0.188 mm (0.0074 in.)
ヘイズ	0.90%
光透過率	92%
引張強度	MD: 179 MPa TD: 197 MPa
伸び率	MD: 132% TD: 99%
静摩擦係数	0.46
動摩擦係数	0.4
加熱収縮率	MD: 0.9% TD: 0.7%

PET基板上の単層グラフェン

Kehan Yu¹ and Junhong Chen^{2*} ¹Department of Chemical Engineering Case Western Reserve University Cleveland, Ohio 44106 ²Department of Mechanical Engineering University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53211 *jhchen@uw

はじめに

透明導電性電極(TCE:transparent conductive electrode)は、太陽電池、 液晶ディスプレイ(LCD:liquid-crystal display)、発光ダイオード(LED: light-emitting diode) およびタッチスクリーンなどの様々なオプトエ レクトロニクスデバイスにとって必須の構成部品です¹⁻³。最も一般的に 用いられる TCE は、ドープ型金属酸化物コーティングガラスであり、例 えば、スズドープ酸化インジウム(ITO:indium tin oxide)、フッ素ド ープ酸化スズ(FTO:fluorine-doped tin oxide)、およびアルミニウム ドープ酸化亜鉛(AZO)などが挙げられます。しかし、この金属酸化物 材料は、現在また将来的にもその利用を制限してしまうようないくつか の欠点を持っています。一つの大きな問題は、インジウムの供給が乏し く、その結果としてコストが高くなるという点です。加えて、ITOや、 その代替材料の FTO、AZO はいずれも曲げに弱いため、柔軟性・伸縮 性を必要とするエレクトロニクスデバイス用途には適していません³⁴。

ー方で、TCE 用の新規材料には、カーボンナノチューブ(CNT: carbon nanotube)、ナノ構造金属(例:金属グリッド、金属ナノワイヤ)およびグラフェンなどがあります(図1A-C)。通常、ITO 代替 TCE は、可視光域において透過率 T > 90% であるとともに、シート抵抗が $R_{\rm S} < 100$ Ω /sq. でなければなりません⁵⁶。大画面ディスプレイや固体照明には、さらに、5 Ω /sq. 以下のシート抵抗が要求されます⁷。CNT ネットワークは、チューブとチューブの接合点の大きな接触抵抗のためにその利用が大きく制限されるため、実用にはまだ時間が必要です。また、銀ナノワイヤ(AgNW、Aldrich 製品番号: 778095、739421、739448)のランダムネットワークは、90%の光透過性を有し、10~20 Ω /sq.のオプトエレクトロニクス特性を示します⁸⁹。

図1 A) CNT ネットワークの AFM 画像(許可を得て文献 10 より転載。 copyright 2007 American Chemical Society)。B) AgNW ネットワークの SEM 画像(許可を得て文献 9 より転載。copyright 2009 American Chemical Society)。C) グラフェン薄片(flake)の SEM 画像(許可を得て文献 11 より転載。 copyright 2012 American Chemical Society)。

グラフェンは、ハニカム格子状に結合した sp² 炭素原子の単層構造を有しており、以下の優れた特性があります。

- 固有電子移動度(2×10⁵ cm²/V·s)が高いため、導電性材料として 有用です¹²。
- 高い熱導電率(約5×10³ W/m·K)は、パワーエレクトロニクスにおける放熱材料として期待されます¹³。
- 高い機械的強度は、フレキシブルエレクトロニクスにも利用可能です。
- 化学的安定性のため、過酷な環境下でも使用することができます。

グラフェンは、可視光から遠赤外域までの範囲で透明となります。理想 的な未ドープの単層グラフェン(SLG: single-layer graphene)の最 小シート抵抗は約 31 Ω/sq. (室温での移動度 2 × 10⁵ cm²/V·s およびキ ャリア濃度 10¹² cm⁻² の独立した単層グラフェン)であるため、グラフ ェンは TCE の有望な材料とされています。ある p-ドープ単層グラフェ ンの R_sは、T > 97%で 600 Ω/sq. を示します。Coleman らは、ドー プしていないグラファイト薄膜(例:数層グラフェン(FLG:few-layer graphene))の上限 Rs を、T = 90%で 337 Ω/sg. と予測しました⁵。こ の値は、グラフェンの真性キャリア濃度が低いために、商業用に必要 な条件をかなり下回っています。しかし、高ドープグラフェンでは、Rs は 62.4/N Ω/sq. に低下します。ここで、N は膜におけるグラフェン層 の数を表しています¹⁴。独立したグラフェンの理論的な透過率は、層数 Nに依存したフレネルの式 T=100-2.3N(%)を用いて導くことができ ます¹⁵。そのため、グラフェン1層あたりの吸光度は、A = 1-T = 2.3 %として算出されます¹⁵。したがって、4 層グラフェンの場合、Rs は 15Ω/sq.、Tは約90%となり、大半の透明導電性材料用途としては十分 な値です。

本論文では、グラフェン TCE に関する最近の研究成果を簡単にまとめました。湿式化学法または気相成長法で作製されたグラフェンの利用について論じ、各技術の長所および短所を比較します。また、グラフェンと他のナノ材料とを組合せることで得られた、優れた特性を示す TCE について紹介します。最後に、グラフェン TCE の開発に関する今後の見通しについても述べます。

基本特性

TCE には高い導電性と光透過性が必須条件ですが、膜厚と各特性との関係が逆であるため、多くの場合、トレードオフの関係にあります。さらに、 材料固有の特性も TCE の特性全体を制限します。固体導体における輸送 では、直流導電率 のcc はキャリア濃度 n (電子またはホール)に比例す るとされていますが、光学的には、古典的 Drude 理論によって、プラ ズマ振動数(光透過スペクトルにおける材料のカットオフ周波数)は n の平方根に比例すると説明されます。つまり、nの増加によって直流導 電率を改善しようとした場合、光透過率が損なわれることを意味してい ます。明らかに、理想的な TCE は、n が低く、キャリア移動度の高い材 料であるといえます。こうした点から、グラフェンはその優れた二次元 電子ガス(two-demensional electron gas)により、高い電子移動度 および低いキャリア濃度を併せ持つ、他にない独特の TCE 材料と言えま す。自由電子濃度 n が約 10^{19} cm⁻³ もしくは 10^{13} cm⁻² (半導体や金属よ りも $8 \sim 9$ 桁低い) である、低ドープグラフェンを仮定した場合、プラ ズマ波長は遠赤外域にまでシフトします。しかし、グラフェンが高移動 度 (室温で約 10^4 cm²/V·s) であるために、直流導電率はかなり高い値 を示します。

TCE 性能を最適化するためのもう一つの問題は、異なる TCE 間の (R_s , T) の値を直接比較できないという点です。キャリア濃度 n およびキャリア 移動度 μ は別として、TCE の (R_s , T) は主に膜厚 t に影響を受けます。 そのため、異なる厚さにおいて様々な材料を直接かつ正確に比較するた めに、固有の測定法が必要です。簡易的な比較として、最近、性能指数 (FOM: figure-of-merit) が提案されています⁵。注目すべきは、導電性 薄膜のシート抵抗がその透明度と物理的に関連している点です。シート 抵抗は、直流導電率 σ_{DC} によって決まります(**式**1)。

$$R_{\rm S} = \frac{1}{\sigma_{\rm DC} t} \tag{1}$$

透過率は、次式により、光学的導電率 σ ορ で制御されます。

$$T = \left(1 + \frac{Z_o}{2}\sigma_{\rm OP}t\right)^{-2} \tag{2}$$

ここで、*Z*₀ = 377Ω は自由空間のインピーダンスです。式1と式2 を組 み合わせることにより、膜厚 *t* を除いた次式が得られます。

$$T = \left(1 + \frac{Z_o}{2R_s} \frac{\sigma_{oP}}{\sigma_{DC}}\right)^{-2}$$
(3)

このように、(R_s, T) は、導電率の比によってのみ決まります(式 4)。 高い FOM 材料が、低い R_s で高い T を示す望ましい TCE であるといえま す。

$$FOM = \frac{\sigma_{DC}}{\sigma_{OP}}$$
(4)

商業用での使用に最低限必要な条件(100 Ω /sq、*T* = 90%)は、式4を 用いると FOM > 35 と表されます。ITO(Aldrich 製品番号:703192、 703184)の場合、通常、FOM は 35 ~ 260 の範囲(8~60 Ω /sq、 *T*=84%)の値になります¹⁶。前記したように、高ドープグラフェン は、 $R_{\rm S} = 62.4$ /N Ω /sq、*T* = 100-2.3N(%)であり、層数 N で変わ るため^{14,15}、244(4層)~258(単層)の範囲の FOM 値となります。 FOM は、半ば経験的なアプローチ(*T*か 550 nm での値であり、基板の 寄与を無視)であるにもかかわらず、十分に高い精度で材料を評価する ことが可能で、様々な TCE 間での比較を容易にします。

FOM をもとにして、報告されているグラフェン TCE を商業用に必要な 標準値と比較しました。FOM の算出には、シート抵抗および光透過率 の文献値と式3を用いました。論文由来のデータを、算出された FOM とともに図2にプロットし、表1にまとめました。

図2 論文で報告されている透過率およびシート抵抗のデータ。CVD で作製され たグラフェン薄膜(中空の赤印)、溶液プロセスにより作製されたグラフェン(緑 印)、および複合型グラフェン膜(青印)の値です。赤の星印は、市販の ITO を 表しています。破線は、商業用に必要な標準値(FOM = 35)を示しています。 実線は、高ドープグラフェン(FOM = 244)の理論値に対応しています。

表1 グラフェン系 TCE および市販 ITO の透過率、シート抵抗および FOM

Material	Τ%	R _s Ω/sq.	FOM	Ref./Relevant Aldrich Product
ITO	84	8	259	703192
ITO	84	12	172	703192
ITO	84	60	34	703184
Solution-processed				
rGO	78	840	1.8	17
rGO	86	1.60E+05	8.70E-03	18
rGO	85	2200	1.2	19
CVD				
Grown with Ni	90	770	4.5	20
Grown with Ni	79	330	4.1	21
Grown with Cu	90	350	10	22
Grown with Cu	90	30	118	23
Grown with Cu	<97	600	27	773719
Hybrid				
CNT + rGO	86	240	10	24
CNT + CVD graphene	90	735	4.7	25
CNT + graphene	91	315	17.7	26
AgNW + graphene	94	33	182	27

溶液プロセスにより作製されたグラフェンTCE

溶液プロセス法は、低コストで大規模な TCE を作製するのにおそらく最 も適した方法であり、カーボンナノチューブ TCE の作製方法と同様の技 術です。一般的に、次の2ステップ、1) グラファイトのグラフェン薄 片(flake)への分離 2)基板上でのグラフェン薄膜の作製に分けられ ます。化学的剥離および超音波剥離は、液相における最初のトップダウ ンステップとして知られている技術です。精製(遠心分離)後、化学的 に変換された酸化グラフェン(GO:graphene oxide、Aldrich 製品番 号:763705、777676)、または超音波処理で得られたグラフェン薄片 のいずれかを用いて、液相での安定な懸濁液を得ることができますが、 後者の場合は一般的に界面活性剤を添加する必要があります。次に行う ボトムアップ作製には、濾過-転写¹⁸、ラングミュアーブロジェット膜 (Langmuir-Blodgett film)法^{28,29}、スピンコーティング^{14,19,30}、液一気 界面自己組織化¹⁷、およびロッドコーティング³¹があります。溶液プロ セスにより作製されたグラフェンシートに見られる比較的大きなシート 抵抗は、多数の小さな粒体および粒界に起因します。Coleman の報告 によれば、溶液プロセスにより作製されたグラフェン薄片のランダムネ ットワークは、通常 FOM < 0.7 (横方向のサイズ:数百 nm)を示しま す⁵。低い FOM 値は、ナノチューブネットワークの接点に類似した薄片 間の接合に起因しています。

GOの化学的剥離は、強力な酸化剤を用いた安価なグラファイト粉末の 酸化によって行い、分離した薄片を得るにはさらに穏やかな剥離処理が 必要です。安定で透明な GO 水分散液は、洗浄、濾過、遠心分離、水へ の再分散によって得られます。GOは、広い範囲で表面に酸素含有基が 導入されるため、絶縁性です。基板へのコーティング後、GO 薄膜を還 元型酸化グラフェン(rGO、Aldrich 製品番号:777684)に変換し、導 電性を回復させる必要があります(図3A)。酸化および還元に関する詳 細については、最近のレビューで解説しています 32。 強い酸化条件によ る GO シートの欠陥生成が避けられないため、GO 薄片は通常小さく、 多くの場合 100 µm² オーダーの面積です^{14,18,19,30,33-38}。なお、Cheng ら は、rGO シートの大きさが 7,000 µm² の、透過率 78%、840 Ω/sq.の TCE を報告しています(FOM = 1.8、表1 を参照)¹⁷。還元技術の開発 が精力的に進められているものの、いずれも GO を完全に還元すること ができず、正確なグラフェン構造の復元がいまだ達成されていません 32。 構造的欠陥を除去できなければ、溶液プロセスにより作製された TCE の 特性を飛躍的に高めることはできません。

図3 溶液プロセスにより作製された GO の薄膜。A) ガラス基板上、および B) プラスチック上の GO 薄膜の写真(許可を得て文献 18 より転載。copyright 2008 Nature)C) ガラス上の 2 枚のグラフェン透明導電性膜の写真。D) 異な る溶液から作製されたグラフェン透明導電性膜の、波長 550 nm での透過率と シート抵抗の関係(許可を得て文献 39 より転載。copyright 2009 American Chemical Society)。

酸化および還元処理を行わずに、純粋なグラフェンを直接生成する液相 手法が開発されました。Coleman らは、N-メチルピロリドン(NMP、 Sigma-Aldrich 製品番号: 328634)、*N,N-* ジメチルアセトアミド(DMA、 Aldrich 製品番号:185884)、γ-ブチロラクトン(GBL、Aldrich 製品番号: B103608)、および 1,3- ジメチル -2- イミダゾリジノン (DMEU、Aldrich 製品番号:40725)などの有機溶媒(CNTの分散にも用いられます)を 用いて、液相にてバルクグラファイトから純粋なグラフェンの剥離に成功し たことを初めて報告しています⁴⁰。Blakeらは、ジメチルホルムアミド(DMF、 Sigma-Aldrich 製品番号: 227056) 中で単に超音波処理を行ってグラフ ァイトを剥離し、十分に分散した懸濁液を得ています⁴¹。Green らは、平 面構造を有するコール酸ナトリウムを界面活性剤として使用して、水中でグ ラファイトを超音波処理することによりグラフェンを作製しました³⁹。密度 勾配超遠心法を用い、厚さの調整されたグラフェンシートを単離しています (図 3D)³⁹。しかし、これらの技術では、まだ粒界の限界を避けて通るこ とはできません (図 3C)。溶液プロセスによるグラフェンで、FOM > 0.7 の TCE が報告されることは稀です。

CVDグラフェンTCE

化学気相成長(CVD:chemical vapor deposition)法は、高性能グラフ エン膜を作製するための最も適した手法と考えられています。CVD法によ って遷移金属(主にNi、Cu)触媒基板上で成長したグラフェンでは、高配 向熱分解グラファイト(HOPG:highly oriented pyrolytic graphite)か らマイクロメカニカルに剥離したグラフェンに近い品質が得られ、大面積の 薄膜を簡単に構築することができます。溶液プロセスにより作製されたグラ フェンと比べ、CVD グラフェンは主に真空内で成長させるためコストが高く なります。しかし、減圧 CVD 法は最新のマイクロエレクトロニクス産業で 利用されているため、スケールアップ時にコストの低減が期待されます。

多結晶 Ni 膜上でのグラフェン成長に関する先駆的研究が、Kong グルー プおよび Hong グループによって報告されました^{20,21}。Ni 薄膜上に作製 したグラフェン膜は、ポリ(メタクリル酸メチル)(PMMA、Aldrich 製品 番号:182230、182265、200336、445746)スタンプ²⁰もしくはポリ ジメチルシロキサン(PDMS、Aldrich 製品番号:423785、482064、 482145)スタンプ²¹によって、ガラスやプラスチック基板に転写すること が可能であり、また PDMS 表面上のグラフェンは柔軟性、伸縮性を有す る膜としても利用できます(図 4A)。その結果、TCE は T = 90% で 770 ~ 1,000 $\Omega/\text{sq.}^{20}$ 、T = 76% で 280 $\Omega/\text{sq.}^{21}$ という値が得られ、それぞれ FOM = 3.5 ~ 4.5、4.1 に相当します。これに対し、同様の転写方法を用 いて Cu 箔上に CVD で作製したグラフェン TCE は、Ni 箔上に作製された グラフェン TCE よりも良好な特性を示し、T = 90% で 350 $\Omega/\text{sq.}$ 、例え ば FOM は約 10 を示します ⁴²。Cu を用いた場合に FOM が高くなるのは、 Cu 上では成長直後のグラフェンがほとんど均一な単層であるのに対して、 Ni 上のグラフェン膜は多層であるのみならず、層の数にばらつきがあるた めです ⁴³。その不均一性が、電荷キャリア移動度に大きな影響を与えます(文 献 20 と 44 を比較参照)。

CVD グラフェンの FOM 値は、溶液プロセスにより作製されたグラフェンよ りも概して1桁高い値です。この結果はColemanの報告からも明らかで あり、CVD グラフェンの FOM が約 10 であるのに対し、溶液プロセスによ り作製されたグラフェンの FOM は約 0.7 です⁵。FOM が高い直接の原因 は、CVD グラフェンに構造欠陥がより少ない点にあり、顕微ラマン分光分 析による確認が多くの論文で行われています。CVD グラフェンのラマンス ペクトルは、HOPG からマイクロメカニカルに剥離したグラフェンのスペク トルとほぼ同じであるのに対して、溶液プロセスにより作製されたグラフェン (特にrGO)は非常に高いDピークを有しており、欠陥が多いことを示唆 しています。第2の要因として、CVD グラフェンの結晶粒径(横方向のサ イズ:数 µm ~数十 µm) が、溶液プロセスにより作製されたグラフェン(横 方向のサイズ:1μm 未満)と比較して大きいという点です。グラフェンの 結晶粒径が増大するにつれて電荷移動度が高くなることが明らかになってお り²²、ミリメートルサイズのグラフェンでは 10,400 cm²/V·s もの高い値と なります¹¹。大きな結晶粒径をもつ CVD グラフェンで作製された TCE では、 適切なドーピングによって非常に高い FOM が得られます。

図4 A) Ni 薄層上でのパターニングしたグラフェン膜の合成、および基板への転写 (許可を得て文献 21 より転載、copyright 2009 Nature)。B) Cu 箔上のグラフ ェン薄膜を用いたロール to ロール法による転写工程。C) 35 インチ PET シート上 に転写された超大面積の透明グラフェン膜。D) ソフトウェアで制御された、コンピ ュータと接続したグラフェン・タッチスクリーンパネル。(B~Dは、許可を得て文献 23 より転載、copyright 2010 Nature)

最近、商業用レベルの TCE の実現に向けて、飛躍的な前進が見られています。Cu 箔上で大面積グラフェンを作製し、次にロール to ロール方式によってポリエチレンテレフタレート(PET) 膜への転写を行いました²³。図4は、フレキシブルな 30 インチ PET 基板へのグラフェン膜のロール to ロール転写を表しています(図4B および C)。著者らは、転写されたグラフェンを用いて大面積タッチスクリーンを実現し、基板全体において優れたオプトエレクトロニクス特性を示すことを明らかにしました。4 層グラフェン(転写を繰り返し、*p*-ドーピングしています)を用いることにより、TCE は *T* = 90%

で 30 Ω/sq.を示し、FOM = 118 と算出されました。このように、グラフェ ン TCE はいくつかの点ですでに ITO を上回っているため、CVD グラフェン の実用化に大きな期待が寄せられています。本稿の範囲を超えたグラフェ ンの CVD 成長および転写に関する技術的詳細は、いくつかの優れた総説 にまとめられています 43,45,46。

グラフェン系ハイブリッド型 TCE

溶液プロセスにより作製されたグラフェン膜の導電性を向上させる1つ の方法として、導電性フィラーの利用が挙げられます。最近では、CNT をグラフェンと共にマトリックスに組み込むことの有益性を示す報告も 発表されています。Tung らは、GO および CNT を無水ヒドラジン中で 混合し、ガラス基板上にスピンコーティングしました(図5A)。SOCl2 をドープした後、TCE は T = 86% で 240 Ω/sq. を示し、これは FOM = 10 に相当します(図 5B-C)²⁴。CNT と CVD グラフェンのハイブリッ ド薄膜では、T = 90% で 735 Ω/sq. を示し、FOM 値は約 4.7 です ²⁵。Si 系太陽電池のトップ電極としてこのハイブリッド膜を用いた場合、5.2% の電力変換効率が得られます²⁵。

図5 A) 溶液プロセスにより作製されたグラフェン- CNT ハイブリッド膜の SEM 画 像。B)スピン速度と光透過率の関係。C)スピン速度とシート抵抗の関係(A~C は許可を得て文献 24より転載、copyright 2009 American Chemical Society)。D) graphenated CNT (g-CNT)のTEM 画像、および E) 各種ナノ炭素材料の Rs と 7%の関係。グラフェン-CNTの物理的混合物よりもg-CNTの7%が向上しています。 (許可を得て文献 47 より転載、copyright 2011 American Chemical Society)。 F) PET 基板上のグラフェン- AgNW ハイブリッド膜の写真。スケールバーは 2 cm を示します。挿入図はこの SEM 画像(スケールバーは 5 µm)です(許可を得て文 献 27 より転載、copyright 2013 American Chemical Society)。

グラフェンと CNT(または他のフィラー材料)は、パーコレーション (percolation) ネットワークにおいて導電性パスを互いに提供していると 一般に考えられています。しかし、チューブー薄片の接合点で新たな抵抗 が発生する可能性があるため、複合化の実際の効果についてはまだ論議 を呼んでいます。ある研究では、単層カーボンナノチューブ(SWCNT: single-walled carbon nanotube) ネットワークにグラフェンを添加して も、このハイブリッド薄膜を SOCl2 で処理しない限り、FOM は向上しない と報告しています²⁶。より重要な点は、FOM が膜の組成に対して単調に 変化しないことです。例えば、グラフェンが 3 wt.% で FOM は最高値(ナ ノチューブのみの膜よりも40%高い)に達し、その後グラフェン含有量が 増えるにつれて減少します²⁶。Yuらは、CNT とグラフェンが共有結合した 「graphenated CNT (g-CNT)」では、チューブー薄片間の抵抗が最小限 に抑えられることを報告しています⁴⁸。プラズマ化学気相成長(PECVD: plasma-enhanced CVD) 法によって CNT の側面に成長したグラフェンは、 物理的な混合物とは本質的に異なります(図 5D)⁴⁸。g-CNTの FOM は、 CNT のみの膜よりも 44% 高くなり、物理的に混合された CNT - グラフェ ンの薄膜よりも 64% 高くなります(図 5E) 48。

ヤの複合化です。最近の報告では、AgNW ーグラフェン膜(図 5F)の FOM が 182 (33 Ω/sq.、T = 94% at 550 nm) もの高い値を示しまし た²⁷。AgNW ネットワークは高い固有導電率を有していますが、その隣接 するグラフェン層が付加的な効果をもたらします。第1に、グラフェン層は 熱的および電気的応力を分散させることができるため、絶縁破壊に対して 強い耐性をもたらします。第2に、AgNWを覆うグラフェン層が熱酸化を 防ぎ、TCE の電気的特性が維持されます。

結論および今後の展望

TCEに用いられているITOは最終的にグラフェンに置き換わるのでしょうか? 現在のところ将来を予測することは不可能ですが、過去数年でかなりの進 展があり、グラフェン TCE の FOM は、1 未満から 100 を超える値まで向 上しています。これは、結晶粒径および結晶化度の増大、欠陥の低減、適 切なドーピング、ナノワイヤ/ナノチューブとの複合化によって達成されま した。グラフェン研究における最近の進歩によって、TCE のさらなる向上 が期待されます。例えば、誘電体基板上でのグラフェンの直接成長は、最 も興味深い研究領域の1つです。また、急速な進歩によって、触媒を用い ないグラフェン成長が実現しています^{47,49}。PECVD 法は、SiO₂/Si 上でグ ラフェンの低温成長(550~650℃)を可能にし、マイクロエレクトロニク ス産業の既存のインフラストラクチャーと互換性があります 50.51。最近の研 究では、炭化水素とH2のプラズマを高度に制御してエッチングおよび核生 成のバランスをとることにより、400℃に加熱した誘電体基板上でのグラフ ェンの直接成長が明らかになっています 52。これら初期の優れた研究成果 から、グラフェン TCF の最終ゴールであるプラスチック基板上でのグラフェ ンの直接成長が実現されることが期待されます。

謝辞

米国エネルギー省(DE-EE0003208)および米国国立科学財団(ECCS-1001039)からの支援に感謝いたします。

References

- Pang, S., Hernandez, Y., Feng, X., Müllen, K. *Adv. Mater.* 2011, *25*, 2779.
 He, M., Jung, J., Qiu, F., Lin, Z. *J. Mater. Chem.* 2012, *46*, 24254.
- Kumar, A., Zhou, C. ACS Nano 2010, 1, 11. (3)
- Sun, Y., Rogers, J. A. Adv. Mater. 2007, 15, 1897. (4)
- (5) De, S., Coleman, J.N. ACS Nano 2010, 5, 2713. http://www.fep.fraunhofer.de/content/dam/fep/en/documents/Produktflyer/Advanced (6)
- transparent conductive coatings on flat and flexible substrates_EN_V2.0_net.pdf (7) Eritt, M., May, C., Leo, K., Toerker, M., Radehaus, C. Thin Solid Films 2010, 11, 3042.
- (8) Lee, J.-Y., Connor, S.T., Cui, Y., Peumans, P. Nano Lett. 2008, 2, 689.
- De, S., Higgins, T.M., Lyons, P.E., Doherty, E.M., Nirmalraj, P.N., Blau, W.J., Boland, J.J., (9) Coleman, J.N. ACS Nano 2009, 7, 1767.
- (10) Contreras, M.A., Barnes, T., van de Lagemaat, J., Rumbles, G., Coutts, T.J., Weeks, C., Glatkowski, P., Levitsky, I., Peltola, J., Britz, D.A. J. Phys. Chem. C 2007, 38, 14045.
- (11) Yan, Z., Lin, J., Peng, Z., Sun, Z., Zhu, Y., Li, L., Xiang, C., Samuel, E.L., Kittrell, C., Tour, J.M. ACS Nano 2012, 10, 9110.
- (12) Chen, J.-H., Jang, C., Xiao, S., Ishigami, M., Fuhrer, M.S. Nature Nanotech. 2008, 4, 206. (13) Balandin, A.A., Ghosh, S., Bao, W., Calizo, I., Teweldebrhan, D., Miao, F., Lau, C.N. Nano Lett.
- 2008, 3, 902. (14) Wu, J., Agrawal, M., Becerril, H.A., Bao, Z., Liu, Z., Chen, Y., Peumans, P. ACS Nano 2009, 1, 43.
- (15) Nair, R.R., Blake, P., Grigorenko, A.N., Novoselov, K.S., Booth, T.J., Stauber, T., Peres, N.M.R., Geim, A.K. Science 2008, 5881, 1308.
- (16) Ellmer, K. Nature Photon. 2012, 12, 809.
- (17) Zhao, J., Pei, S., Ren, W., Gao, L., Cheng, H.-M. ACS Nano 2010, 9, 5245.
- (18) Eda, G., Fanchini, G., Chhowalla, M. Nature Nanotech. 2008, 5, 270.
- (19) Becerril, H.A., Mao, J., Liu, Z., Stoltenberg, R.M., Bao, Z., Chen, Y. ACS Nano 2008, 3, 463. (20) Reina, A., Jia, X., Ho, J., Nezich, D., Son, H., Bulovic, V., Dresselhaus, M.S., Kong, J. Nano Lett. 2008, 1, 30.
- (21) Kim, K.S., Zhao, Y., Jang, H., Lee, S.Y., Kim, J. M., Kim, K.S., Ahn, J.-H., Kim, P., Choi, J.-Y., Hong, B.H. Nature 2009, 7230, 706.
- (22) Li, X., Magnuson, C.W., Venugopal, A., An, J., Suk, J.W., Han, B., Borysiak, M., Cai, W., Velamakanni, A., Zhu, Y., Fu, L., Vogel, E.M., Voelkl, E., Colombo, L., Ruoff, R.S. Nano Lett. 2010, 11, 4328.
- (23) Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.-S., Zheng, Y., Balakrishnan, J., Lei, T., Ri Kim, H., Song, Y.I., Kim, Y.-J., Kim, K.S., Ozyilmaz, B., Ahn, J.-H., Hong, B.H., Iijima, S. Nature Nanotech. 2010, 8, 574. (24) Tung, V.C., Chen, L.-M., Allen, M.J., Wassei, J.K., Nelson, K., Kaner, R.B., Yang, Y. Nano Lett. 2009,
- 5, 1949. (25) Li, C., Li, Z., Zhu, H., Wang, K., Wei, J., Li, X., Sun, P., Zhang, H., Wu, D. J. Phys. Chem. C 2010,
- 33, 14008
- (26) King, P.J., Khan, U., Lotya, M., De, S., Coleman, J.N. ACS Nano 2010, 7, 4238

高性能 TCE 実現へのもう一つのアプローチは、グラフェンと金属ナノワイ

aldrich.com/ms-ip

- (27) Lee, M.-S., Lee, K., Kim, S.-Y., Lee, H., Park, J., Choi, K.-H., Kim, H.-K., Kim, D.-G., Lee, D.-Y., Nam, S., Park, J.-U. Nano Lett. 2013, 13(6), 2814.
- (28) Cote, L.J., Kim, F., Huang, J. J. Am. Chem. Soc. 2009, 131(3), 1043.
- (29) Li, X., Zhang, G., Bai, X., Sun, X., Wang, X., Wang, E., Dai, H. Nature Nanotech. 2008, 9, 538.
- (30) Wu, J., Becerril, H.A., Bao, Z., Liu, Z., Chen, Y., Peumans, P. Appl. Phys. Lett. 2008, 26, 263302.
- Wang, J., Liang, M., Fang, Y., Qiu, T., Zhang, J., Zhi, L. Adv. Mater. 2012, 21, 2874.
 Mao, S., Pu, H., Chen, J. RSC Adv. 2012, 7, 2643.
- (33) Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D.,
- Granozzi, G., Garfunkel, E., Chhowalla, M. Adv. Funct. Mater. 2009, 16, 2577 (34) Liang, Y., Frisch, J., Zhi, L., Norouzi-Arasi, H., Feng, X., Rabe, J.P., Koch, N., Müllen, K. Nanotechnol. 2009, 43, 434007.
- (35) Wang, X., Zhi, L., Mullen, K. Nano Lett. 2007, 1, 323.
- (36) Zhao, L., Zhao, L., Xu, Y., Qiu, T., Zhi, L., Shi, G. Electrochim. Acta 2009, 2, 491.
- (37) Liu, Y., Gao, L., Sun, J., Wang, Y., Zhang, J. Nanotechnol. 2009, 46, 465605.
- (38) Eda, G., Lin, Y.-Y., Miller, S., Chen, C.-W., Su, W.-F., Chhowalla, M. Appl. Phys. Lett. 2008, 23.
- (39) Green, A.A., Hersam, M.C. Nano Lett. 2009, 9(12), 4031.
- (40) Hernandez, Y., Nicolosi, V., Lotya, M., Blighe, F.M., Sun, Z., De, S., McGovern, I.T., Holland, B., Byrne, M., Gun'Ko, Y.K., Boland, J.J., Niraj, P., Duesberg, G., Krishnamurthy, S., Goodhue, R., Hutchison, J., Scardaci, V., Ferrari, A.C., Coleman, J.N. Nature Nanotech. 2008, 9, 563.

- (41) Blake, P., Brimicombe, P.D., Nair, R.R., Booth, T.J., Jiang, D., Schedin, F., Ponomarenko, L.A., Morozov, S.V., Gleeson, H.F., Hill, E.W., Geim, A.K., Novoselov, K.S. Nano Lett. 2008, 6, 1704.
- (42) Li, X., Zhu, Y., Cai, W., Borysiak, M., Han, B., Chen, D., Piner, R.D., Colombo, L., Ruoff, R.S. Nano Lett. 2009, 12, 4359.
- (43) Mattevi, C., Kim, H., Chhowalla, M. J. Mater. Chem. 2011, 10, 3324.
- (44) Li, X., Cai, W., An, J., Kim, S., Nah, J., Yang, D., Piner, R., Velamakanni, A., Jung, I., Tutuc, E., Banerjee, S.K., Colombo, L., Ruoff, R.S. Science 2009, 5932, 1312.
- (45) Zhang, Y., Zhang, L., Zhou, C. Acc. Chem. Res. 2013, 10, 2329.
- (46) Chen, Y.P., Yu, Q., Newell, D., Wu, W., Jauregui, L.A., Cao, H., Shen, T., Chung, T.F. Int. J. Mod. Phys. B 2013, 10, 1341002.
- (47) Chen, J., Wen, Y., Guo, Y., Wu, B., Huang, L., Xue, Y., Geng, D., Wang, D., Yu, G., Liu, Y. J. Am. Chem. Soc. 2011, 133(44), 17548.
- (48) Yu, K., Lu, G., Bo, Z., Mao, S., Chen, J. J. Phys. Chem. Lett. 2011, 13, 1556.
- (49) Hwang, J., Kim, M., Campbell, D., Alsalman, H.A., Kwak, J.Y., Shivaraman, S., Woll, A.R., Singh, A.K., Hennig, R.G., Gorantla, S., Rümmeli, M.H., Spencer, M.G. *ACS Nano* 2013, 7(1), 385.
 (50) Zhang, L., Shi, Z., Wang, Y., Yang, R., Shi, D., Zhang, G. *Nano Res.* 2011, *3*, 315.
- (51) Yang, W., He, C., Zhang, L., Wang, Y., Shi, Z., Cheng, M., Xie, G., Wang, D., Yang, R., Shi, D.,
- Zhang, G. Small 2012, 9, 1429.
- (52) Wei, D., Lu, Y., Han, C., Niu, T., Chen, W., Wee, A.T.S. Angew. Chem., Int. Ed. 2013, 14121.

グラフェン

グラフェンの最新製品リストは aldrich.com/graphene をご覧ください。

Name	Sheet Resistance	Prod. No.
Monolayer graphene film, 1 cm x 1 cm on copper foil	600 Ω/sq	773697-4EA
Monolayer graphene film, 1 cm x 1 cm on quartz	600 Ω/sq	773719-4EA
Monolayer graphene film, 1 cm x 1 cm on SiO ₂ /Si substrate	600 Ω/sq	773700-4EA
Monolayer graphene film, 1 in. x 1 in. on PET film	700 Ω/sq	745863-1EA 745863-5EA
Monolayer graphene film, 2 in. x 2 in. on PET film	700 Ω/sq	745871-1EA

酸化グラフェン(GO)

Name	Concentration	Form	Prod. No.
Reduced graphene oxide	-	powder	777684-250MG 777684-500MG
Graphene oxide	2 mg/mL	dispersion in H ₂ O	763705-25ML 763705-100ML
Graphene oxide	4 mg/mL	dispersion in H ₂ O	777676-50ML 777676-200ML
Graphene oxide, ammonia functionalized	1 mg/mL	dispersion in H ₂ O	791520-25ML

カーボンナノチューブ(CNT)

単層カーボンナノチューブインク

単層カーボンナノチューブの最新製品リストは aldrich.com/swent-jp をご覧ください。

SWCNT Concentration	Viscosity	Sheet Resistance	Form	Prod. No.
0.20 +/- 0.01 g/L (by Absorbance at 854 nm)	viscosity ~1.0 mPa.s	resistance <400 Ω/sq (by 4-point probe on prepared film by spray)	dispersion in H_2O	791490-25ML 791490-100ML
1.00 +/- 0.05 g/L (by Absorbance at 854 nm)	viscosity 3.0 mPa.s (at 10 sec ⁻¹ shear rate)	resistance <600 Ω/sq (by 4-point probe on prepared film by spray)	dispersion in H ₂ O	791504-25ML 791504-100ML

単層カーボンナノチューブ(SWCNT)

Production Method	Dimensions	Purity	Prod. No.
CoMoCAT® Catalytic Chemical Vapor Deposition (CVD) method	diameter 0.6 - 1.1 nm	>95% (carbon as SWCNT)	775533-250MG 775533-1G
CoMoCAT® Catalytic Chemical Vapor Deposition (CVD) Method (6,5) chirality carbon >= 95%	diameter 0.7 - 0.9 nm (by fluorescence)	≥93% (carbon as SWNT)	773735-250MG 773735-1G
CoMoCAT [®] Catalytic Chemical Vapor Deposition (CVD) Method (7,6) chirality	diameter 0.7 - 1.1 nm L 300-2300 nm (mode: 800 nm; AFM)	≥77% (carbon as SWNT)	704121-250MG 704121-1G
CoMoCAT [®] Catalytic Chemical Vapor Deposition (CVD) Method (6,5) chirality	diameter 0.7 - 0.9 nm (by fluorescence) L ≥700 nm	≥77% (carbon as SWNT)	704148-250MG 704148-1G
CoMoCAT® Catalytic Chemical Vapor Deposition (CVD) Method	diameter 0.7 - 1.4 nm	≥80.0% (carbon as SWNT)	724777-250MG 724777-1G

Production Method	Dimensions	Purity	Prod. No.
CoMoCAT® Catalytic Chemical Vapor Deposition (CVD) Method	diameter 0.7 - 1.3 nm L 450-2300 nm (mode: 800 nm; AFM)	≥70% (carbon as SWNT)	704113-250MG 704113-1G
Catalytic Carbon Vapor Deposition (CCVD) Method	average diameter 2 nm $L \times 3$ (TEM)	>70%, TGA	755710-250MG 755710-1G
Electric Arc Discharge Method	diameter 1.2 - 1.7 nm L 0.3-5 μm	30% (Metallic) 70% (Semiconducting)	750492-100MG
Electric Arc Discharge Method	diameter 1.2 - 1.7 nm L 0.3-5 μm	70% (Semiconducting) 30% (Metallic)	750514-25MG
Electric Arc Discharge Method	diameter 1.2 - 1.7 nm L 0.3-5 μm	2% (Metallic) 98% (Semiconducting)	750522-1MG
Electric Arc Discharge Method	diameter 1.2 - 1.7 nm L 0.3-5 μm	2% (Semiconducting) 98% (Metallic)	750530-1MG
Electric Arc Discharge Method	D × L 2-10 nm × 1-5 μm (bundle dimensions) 1.3-1.5 nm (individual SWNT diameter)	40-60 wt. % carbon basis	698695-1G 698695-5G

二層カーボンナノチューブ(DWCNT)

二層カーボンナノチューブの最新製品リストは aldrich.com/dwnt をご覧ください。

Production Method	Dimensions	Purity	Prod. No.
Catalytic Carbon Vapor Deposition (CCVD) Method	avg. diam. × L 3.5 nm × >3 μm (TEM)	Metal Oxide ≤10% TGA	755141-1G
Catalytic Carbon Vapor Deposition (CCVD) Method	avg. diam. × L 3.5 nm × 1-10 μm (TEM)	Metal Oxide <10% TGA	755168-1G

多層カーボンナノチューブ(MWCNT)

多層カーボンナノチューブの最新製品リストは aldrich.com/smw-jp をご覧ください。

Production Method	Description	Purity	Prod. No.
CoMoCAT® Catalytic Chemical Vapor Deposition (CVD) Method	O.D. \times I.D. \times L 10 nm ± 1 nm \times 4.5 nm ± 0.5 nm \times 3-~6 μm (TEM)	≥98% carbon basis	773840-25G 773840-100G
CoMoCAT® Catalytic Chemical Vapor Deposition (CVD) Method	O.D. × L 6-9 nm × 5 μm diam. 5.5 nm (mode) diam. 6.6 nm (median)	>95% (carbon)	724769-25G 724769-100G
CoMoCat® Catalytic Chemical Vapor Deposition (CVD) Method	O.D. \times I.D. \times L 10 nm \times 4.5 nm \times 4 μm	70-80%, TGA (Carbon content)	791431-25G 791431-100G
Catalytic Carbon Vapor Deposition (CCVD) Method	avg. diam. \times L 9.5 nm \times <1 μm (TEM) thin and short	Metal Oxide <5% TGA	755117-1G
Catalytic Carbon Vapor Deposition (CCVD) Method	avg. diam. × L 9.5 nm × 1.5 μm (TEM) thin	Metal Oxide <5% TGA	755133-5G
Chemical Vapor Deposition (CVD) Method	O.D. × L 6-13 nm × 2.5-20 μm 10 μm (average length, TEM) 12 nm (average diameter, HRTEM)	>98% carbon basis	698849-1G
Chemical Vapor Deposition (CVD) Method	D × L 110-170 nm × 5-9 μm	>90% carbon basis	659258-2G 659258-10G
Electric Arc Discharge Method	O.D. \times L 7-12 nm \times 0.5-10 μm powdered cylinder cores	20-30% MWCNT basis	406074-500MG 406074-1G 406074-5G
Electric Arc Discharge Method	O.D. \times L 7-15 nm \times 0.5-10 μm as-produced cathode deposit	>7.5% MWCNT basis	412988-100MG 412988-2G 412988-10G
Plasma-Enhanced Chemical Vapor Deposition (PECVD) Method	diam. × L 100-150 nm × 30 μm (SEM) vertically aligned on silicon wafer substrate	>95 atom % carbon basis (x-ray)	687804-1EA
Plasma-Enhanced Chemical Vapor Deposition (PECVD) Method	diam. × L 100 nm ±10% × 30 µm ±10% vertically aligned on copper wafer substrate	>99.9% carbon basis	687812-1EA

有機導電性インク

PEDOT/PSSについては aldrich.com/pedot-jp、Plexcore OC導電性インクについては aldrich.com/ocink-jp をご覧ください。

Structure	Name	Concentration (%)	Viscosity (cP)	Other Properties	Prod. No.
	Poly(3,4-ethylenedioxythiophene)- poly(styrenesulfonate) PEDOT/PSS Orgacon™ IJ-1005	0.8 in H ₂ O	7-12 at 22 ℃	resistance 75-120 Ω/sq (>80% visible light transmission, 40 μm wet)	739316-25G
O=S=O O ⁻ OH					
	Poly(thiophene-3-[2-(2-methoxyethoxy) ethoxy]-2,5-diyl), sulfonated	2 in 1,2-propanediol/isopropanol/ water, 3:2:1	7-13 (Brookfield)	resistivity 25-250 Ω -cm work function -5.1 - -5.2 eV	699799-25ML
		2 in ethylene glycol monobutyl ether/water, 3:2	4.0-10.0 (Brookfield)	resistivity 500-3,000 Ω-cm work function -5.15.2 eV	699780-25ML
	Plexcore® OC RG-1110 organic conductive ink	2.1	8.3 at 25 ℃	resistivity 10-300 Ω-cm	719110-25ML
° (S) (S) (S) (S) (S) (S) (S) (S) (S) (S	Plexcore® OC RG-1115 organic conductive ink	2.0	8.7 at 25 ℃	resistivity 10-300 Ω -cm work function 4.8 eV	719129-25ML
	Plexcore [®] OC RG-1150 organic conductive ink	2.0	8.0 at 25 ℃	resistivity 300-1000 Ω-cm work function 4.8 eV	719137-25ML
	Plexcore [®] OC RG-1155 organic conductive ink	2.0	8.6 at 25 ℃	resistivity 300-1000 Ω -cm	719145-25ML
	Plexcore [®] OC ink system (kit)			[Kit component] RG-1110 ink 10 mL RG-1115 ink 10 mL RG-1150 ink 10 mL RG-1155 ink 10 mL	719102-1KT

有機太陽電池作製用インクキット

インクキットの詳細は aldrich.com/pvink-jp をご覧ください。

Plexcore PV ink s	system	PV 1000 PV 2000		
Prod. No.		711349-1KT	772364-1KT	
	p-type polymer	CH ₂ (CH ₂) ₄ CH ₃	poly(3-hexylthiophene-2,5-diyl) (P3HT)	
Photoactive ink (容量:25ML)	n-type fullerene	[6,6]-phenylbutyric acid methyl ester C ₆₀ (PCBM)	Indene C60 bisadduct (ICBA)	
Hole transpor (容量:25ML	t ink _)	SO_3H O-Polyether SO_3H Sulfonated poly(thiop O-Polyether	shene-3-[2-(2-methoxyethoxy)ethoxy]-2,5-diyl) (S-P3MEET)	
	Voc	0.60 V	0.81 V	
NIDEI 詞宗	I _{sc}	0.49 mA	0.44 mA	
マバイフ特性	J _{sc}	9.87 mA/cm ²	10.32 mA/cm ²	
ノバイス付任	Fill Factor	65 %	72 %	
	Efficiency	3.83 %	5.98 %	

透明導電性基板

Indium Tin Oxide (ITO) Coated Substrates

Description	L × W × Thickness (mm)	Surface Resistivity (Ω/sq)	Prod. No.
Indium tin oxide coated PET	$1 \text{ ft} \times 1 \text{ ft} \times 5 \text{ mil}$	60	639303-1EA 639303-5EA
	1 ft \times 1 ft \times 5 mil	100	639281-1EA 639281-5EA
	1 ft \times 1 ft \times 5 mil	200	749745-1EA 749745-5EA
	1 ft \times 1 ft \times 5 mil	250	749761-1EA 749761-5EA
	1 ft \times 1 ft \times 5 mil	300	749796-1EA 749796-5EA
	1 ft \times 1 ft \times 7 mil	60	749729-1EA 749729-5EA
	1 ft \times 1 ft \times 7 mil	100	749737-1EA 749737-5EA
	1 ft \times 1 ft \times 7 mil	200	749753-1EA 749753-5EA
	1 ft \times 1 ft \times 7 mil	250	749788-1EA 749788-5EA
	1 ft \times 1 ft \times 7 mil	300	749818-1EA 749818-5EA
Indium tin oxide coated glass slide, square	25 × 25 × 1.1	8-12	703192-10PAK
	25 × 25 × 1.1	30-60	703184-10PAK
	25 × 25 × 1.1	70-100	703176-10PAK
Indium tin oxide coated glass slide, rectangular	75 × 25 × 1.1	8-12	578274-10PAK 578274-25PAK
	75 × 25 × 1.1	15-25	636916-10PAK 636916-25PAK
	75 × 25 × 1.1	30-60	636908-10PAK 636908-25PAK
	75 × 25 × 1.1	70-100	576352-10PAK 576352-25PAK
Indium tin oxide coated boro-aluminosilicate glass slide	75 × 25 × 1.1	5-15	576360-10PAK 576360-25PAK

Fluorine-doped Tin Oxide (FTO) Coated Substrates

Description	$L \times W \times D$ (mm)	Surface Resistivity (Ω/sq)	Prod. No.
Fluorine doped tin oxide coated glass slide	$50 \times 50 \times 2.2$	~7	735140-5EA
	50 × 50 × 3	~8	735175-5EA
	50 × 50 × 3	~10	735205-5EA
	50 × 50 × 2.2	~13	735248-5EA
	100 × 100 × 2.3	~7	735159-5EA
	100 × 100 × 3	~8	735183-5EA
	100 × 100 × 3	~10	735213-5EA
	100 × 100 × 2	~13	735256-5EA
	300 × 300 × 2	~7	735167-1EA
	300 × 300 × 3.2	~8	735191-1EA
	300 × 300 × 3	~10	735221-1EA
	300 × 300 × 2.3	~13	735264-1EA

色素増感太陽電池 に関する知見およびその構成材料

Hans Desilvestro, Yanek Hebting, Mikael Khan, Damion Milliken Dyesol, Queanbeyan NSW 2620, Australia Email: yhebting@dyesol.com

はじめに

色素増感作用は、カラー写真の基礎をなすものとして長い間利用されて きました¹。一方、この原理を太陽光から電気への変換に用いる試みがな されましたが、100 nA/cm² を下回る非常に低い光電流を得ただけでし た²。1980年代中頃には、高表面積を有する二酸化チタン(チタニアま たは TiO2) にカルボキシル基による結合を介してルテニウム系色素を化 学吸着させることにより、mA/cm²のオーダーで光電流が得られ、最大 44%の光電変換効率(IPCE: incident photon-to-current conversion efficiency、または外部量子効率 [EQE: external quantum efficiency] とも呼ばれています)を達成しました³。その後まもなく、メソポーラ ス TiO2 および l3/l 酸化還元対を含む有機電解液を基盤とした色素増感 太陽電池 (DSC: dye-sensitized solar cell) が開発されました⁴⁵。これ らの先駆的発見以降、理想的ではない散乱光条件下でも高効率で発電で きることが見込まれたほかに、比較的低コストで、製造工程で大きなエ ネルギーを必要とせず、軽量性・柔軟性・半透明性も有することから、 DSC 開発は産学界の大きな関心を集めています⁶。現在、典型的な溶媒 および酸化還元対を用いて作製された DSC では、エアマス(AM: Air Mass)1.5 の照射条件で12.3% の変換効率⁷ が得られていますが、最近 ではチタニア系固体デバイスにおいて 15% の変換効率が研究室レベル で報告されています^{8,9}。本論文では、DSC デバイスの組立てに必要なコ ア材料、および太陽電池デバイスにおけるそれら材料の相互作用につい て述べます。

色素増感太陽電池の主な構成要素

ー般に、DSC の主な構成要素は、TiO₂、ルテニウム系色素、電解質溶液、 白金電気触媒および銀インクです。それぞれの構成材料の間には多様な 相互作用が存在するため、構成要素の一つ、例えば色素を変更した場合 には、TiO₂の粒径や膜厚、電解質成分などを調整し、反応系のパフォー マンスを最適化する必要があります。図1は、DSC の主な構成要素を入 射光側から順に示しました。

- 透明基板
- 透明導電性酸化物(TCO:Transparent Conductive Oxide) 層

- 色素の単分子層で表面を覆われたメソポーラス TiO₂ 層
- 色素吸着した TiO₂ 膜の細孔を満たす電解液(および TiO₂ と対電極 との間の電解液層)
- Pt などの電気触媒の非常に薄いコーティング
- TCO 薄膜でコーティングされた対電極基板
- 長期安定性を必要とする場合、周囲の封止、必要に応じて隙間の封止
- 集電効率を最大にするための2本の集電体バスバー(bus bar)(オ プション)

図1 色素増感太陽電池の構造および主な構成要素の概略図

TiO2ペーストおよび薄膜

チタニアは、歯みがき粉、日焼け止め、塗料といった日常製品に広く利 用されている非毒性の材料です。塗料に用いる場合は、樹脂の分解・黄 変・膨張などを最小限に抑えるために光化学的に活性の低いTiO2が用い られます。これとは対照的に、DSCには最も高活性のチタニア(アナタ ーゼ)が必要です¹⁰。アナターゼ型TiO2(Aldrich 製品番号:637254) は n 型半導体であり、3.2 eVのバンドギャップに相当する約 390 nmの 波長の光を吸収し、電子が励起されます。従来の太陽電池パネルには、 99.9999% 純度のシリコン(不純物全体で1 ppm 未満の太陽電池グレ ード)が要求されます¹¹。これに対して、太陽電池グレードほどではあ りませんが、DSC 用のアナターゼ型TiO2においても純度は重要な要件 であり、18NRペースト(Aldrich 製品番号:791547、791555)の調 製に用いられるような高品質チタニア材料は、少なくとも 99%の相純 度を有しています。DSC研究用として普及している他のチタニア製品は、 アモルファスTiO2のみならずかなりの量のルチル型を含み¹²、低い相純 度を示すため、システム性能に大きな影響を与えます。 DSC の性能は、TiO₂ の化学的純度および相純度のみならず、粒子の サイズ、分布、形状、表面水酸基、塗布法および焼結温度といった他 の因子にも依存します。ペースト組成、印刷、乾燥および焼結のパラ メータは、最適な結果を得るために精密に制御される必要があり、膜 の形態や膜全体の多孔性および細孔分布に影響を及ぼします。18NR-T (transparent, Aldrich 製品番号:791547) および18NR-AO (active opaque, Aldrich 製品番号:791555) チタニアペーストの利用によって、 非常に優れた成果が得られています⁸。推奨されたスクリーン印刷およ び焼成条件下で、18NR-Tペーストによって、光学的に透明で、厚さ6 ~7 µm、多孔質度が約65%の薄膜を作製できます。用いる色素によっ て1~3 層が必要となる場合があり、あるいは、様々なメッシュサイズ によるスクリーン印刷によって全体の膜厚を精密に調整することも可能 です。

図2は、焼結した18NR-T膜のSEM画像を示しています。平均粒径は約20nmです。DSCにおけるチタニア電極のナノ粒子および細孔の特性(細孔径2~50nm)は、少なくとも以下の5つの面で重要です。

- 可視光の波長よりも十分に小さい粒子サイズのため、光学的に透明 な薄膜となります。
- デバイス電圧を減少させる界面電荷空乏層の形成を電子的に回避します。より大きな粒径からなる半導体(TiO2)に見られるような電荷空乏層の幅よりも粒子がかなり小さいため、空乏層は固体/電解質の界面に形成されません。その代わり、電子はTiO2伝導帯の中を自由に拡散します。電荷は電解液中の陽イオンによって効果的にスクリーニングされ、TiO2粒子ネットワークを通じて電子輸送が促進されます。
- 約 500℃という比較的低い温度で、粒子と粒子との結合を機械的かつ電子的に促進します。より大きな粒径のチタニア粒子は、800℃以上の高い温度でのみ焼結します。
- 入射光の効率的な集光を最大にするため、色素吸着に大きな表面積 が必要です。
- 色素分子のチタニア粒子への吸着や、デバイス動作中に酸化された
 色素を還元する電解質イオンの浸透のために、開孔性の多孔質構造が必要です。

図2 18NR-Tペーストにより作製した TiO2 膜の焼結後の SEM 画像

透明膜は、窓や天窓といった半透明性の最終製品を可能にしますが、多 くはより長波長の光を十分に吸収することができません。そのため、あ る程度の光散乱および内部反射が望まれます。この場合、より大きな光 散乱 TiO₂ 粒子をチタニアペーストに加える方法、もしくは散乱層を透明 層の上部に追加する方法のいずれかを用いることで解決されます。 前者には、チタニア全体の膜厚が大きく増加しないという利点がありま す。添加された大きな粒子(18NR-AOの場合、直径は最大で450 nm)は、 その光散乱効果を通じて性能に寄与するのみならず、色素吸着により活 性化することで光変換をより高効率に進めます。また、二層構造にする よりも一種類のペーストを用いる方が簡便です。光散乱する比較的大き な粒子を添加するとヘイズ率(曇り度)の増加につながりますが、この ヘイズ率は**式1**によって定義されます。

Haze $(\lambda) = T_d(\lambda)/T_{tot}(\lambda) = (1 - T_s(\lambda))/T_{tot}(\lambda)$ (1)

ここで、 $T_d(\lambda)$ は波長 λ における拡散(または散乱)透過率、 T_s は正透 過率、 T_{tot} は全光線透過率です。18NR-AOペースト(Aldrich 製品番号: 791555)で作製した 15 μ m 薄膜のヘイズ率は、可視スペクトル全域で 99%を超えています。より長波長(例:800 nm)では、デバイス性能 はヘイズ率に伴って増加します¹³。最も高い変換効率が必要な場合や、 特により高い粘性の電解液を用いる場合には、18NR-AOペーストが最 適です。18NR-AOペーストは、より薄いチタニア膜の作製を容易にし ますが、これはTiO₂のメソポーラス構造に起因する長いパスを短くし、 電解質の移動度を向上させるという点で有利となります¹⁴。推奨された スクリーン印刷および焼成条件の下で18NR-AOペーストを使用するこ とにより、白色で不透明な、厚さ7~8 μ m、多孔質度が約55~60% の膜が得られます。18NR-Tと同様に、増感色素の性質によっては1~ 3層が必要となる場合があり、あるいは、様々なメッシュサイズによる スクリーン印刷によって膜厚全体を調整することができます。

最大出力を求める場合、WER2-O reflector チタニアペースト(Aldrich 製品番号:791539)による散乱層により、色素の光吸収が弱くなる長 波長域で IPCE を著しく高めることが可能です。WER2-O は、十分に分 散された、主に DSC 不活性な 150 ~ 250 nm 径の散乱粒子を含んでい ます。推奨条件に従った場合、透明な活性層の上に厚さ 3μm の完全に 不透明な白色薄膜を得ることができます。

色素

色素は DSC で最も重要な材料です。色素の吸収スペクトルおよび n 型 (電子) 導体への電子カップリングにより、吸収(n_{abs}) および電子注入 効率(n_{inj})が決定されます。これらは IPCE の 3 つの重要な因子のうち の 2 つです。

$$IPCE(\lambda) = \eta_{abs}(\lambda) \times \eta_{ini}(\lambda) \times \eta_{coll}(\lambda)$$
(2)

チタニア膜内部のかなりの部分が、色素吸着に利用可能です。吸着した 色素の量は、化学的な色素脱離と分光測定法を用いて測定できます¹⁵。 典型的な例として N719(Aldrich 製品番号:703214)の単位面積あた りの色素吸着量は、1.1x10⁷ mol/cm²です。この値は、膜厚(dTiO₂)が 14 μ m の場合、C⁴^{NO}₆ = 7.8x10⁵ mol/cm³の色素濃度に相当します。透 明膜では、吸収される光、すなわち透過しない光(=1-T)の量を式3か ら推定できます。

$$1 - T = 1 - 10^{-\varepsilon c_{TiO_2}^{dye} d_{TiO_2}}$$
(3)

吸光係数 ε は、TiO₂ に吸着した場合でも、溶液における ε_{max} 値 (N719 では 14,700 M⁻¹ cm⁻¹) とあまり変わらず、ある量の色素によって、吸収 極大で 97.5% の光を吸収することができます。しかし、TiO₂ に吸着す ることで色素の吸収スペクトルがレッドシフトをすることに注意してく ださい。表面粗さ係数を約 1,300 とみなした場合、各 N719 分子は約 2 nm²の面積を占めます。この数値は N3 (Aldrich 製品番号: 703206) の理論的に推定された占有面積と比べて 30 ~ 70% 高いことから¹⁶、す べての TiO₂ サイトが占有状態もしくは吸着可能な状態ではないことを示 しています。

	図 3	3は、	以下の表に記載のルテニウム色素の構造を表し	、ています。
--	-----	-----	-----------------------	--------

Dye	Aldrich Prod. No.	Based On
N3	703206	Bipyridine
N719	703214	Bipyridine
Z907	703168	Bipyridine
K19	791415	Bipyridine
C101	791423	Bipyridine
C106	791393	Bipyridine
N749	791245	Terpyridine

色素N3、N719およびN749は、すべてのピリジン系配位子にプロトン化・ 脱プロトン化したカルボキシル基が存在するため、親水性の挙動を示し ます。他の色素の場合、TiO2に吸着すると、吸着していないビピリジン 配位子に無極性側鎖があるために疎水性の挙動を示します。すべてのビ ピリジン色素は、ルテニウムイオンに対して電荷バランスがとれていま すが、ターピリジン色素の場合、ルテニウム金属中心に結合した3つの イソチオシアネート基が存在するためアニオン性です。ビピリジン系色 素は赤から栗色を示す一方、ターピリジン色素は濃緑色を呈し、非透過 性デバイスでは実質的に黒く見えます。

脂肪族側鎖、および芳香族系、電子豊富、電子供与性構造を含む他の無 極性側鎖によって、以下のような傾向を示します。

- π 電子系が大きくなるため、吸光係数がより高くなります。そのため、 通常では単位面積あたりの色素(およびルテニウム)の必要量が減 少します。
- 側鎖の大きさや動的運動によって TiO2 表面への ls⁻の接近が抑制されるため(立体効果)、電荷再結合が減少します。
- 基底状態における pKa が高いため、TiO2 表面への静電結合が増加し ます。
- 色素上の電荷が減少するため、吸着色素間の静電反発力が低下して、
 色素充填量が増加します。
- 水が原因で起こる色素の脱離に対する、太陽電池の安定性が増大します。
- これらの錯体の酸化電位は N3 増感剤と比べてカソード側にシフトしているため、ルテニウム III/II 対の可逆性が増加し、安定性が向上します¹⁷。

上述した長い脂肪族鎖および共役した側鎖の利点に加え、金属から配位 子への電荷移動遷移(MLCT: metal to ligand charge transfer) も長波 長側にシフトすると予測されます¹⁸。深色効果は、親油性側鎖よりもむ しろピリジン間の共役の増加によって主に制御されます。また、図4に おいてビピリジン系構造をターピリジン系構造と比べた場合、共役電子 の数によってモル吸光係数に影響の及ぶことが確認されます。N3から C106、さらにK19と見ていくと、N3とN749を比べた場合とは対照的 に、レッドシフトは比較的穏やかです。

図4 ビピリジン系およびターピリジン系ルテニウム色素の紫外可視スペクトル

電解液

DSC デバイスの電解液は、以下の重要な機能を有しています。

- 内部電荷輸送によって外部回路に電流の流れが発生します。
- 色素励起および TiO₂ への電子注入の後、色素が再生されます(式 4)。

$$Dye^{+} + 3/2 I^{-} \rightarrow Dye + \frac{1}{2} I_{3}^{-}$$
 (4)

 光アノードでの Is 生成および対電極での部分的な Is 欠乏により生成 した Is /r 濃度勾配の拡散平衡を促します。

DSC デバイスは、20 mA/cm² 以上の電流密度を有する電気化学的に高 出力なデバイスであり、高いデバイス効率を得るためには十分な電解液 伝導度と比較的速い拡散度が重要となります。

図3 ビピリジン系およびターピリジン系ルテニウム色素の構造

表1は、EL-HPE(Aldrich 製品番号:791482)、EL-HSE(Aldrich 製品番号: 791466)、および EL-HTE(Aldrich 製品番号:791458)の電解液伝導 度を比較したものです。電解液伝導は、一般に溶媒の粘度の増加および 沸点の上昇につれて減少します。DSC電解液による直接的な抵抗損失は、 TCOのオーム損失と比べて比較的小さい点に注意が必要です。電極間距 離が 40 μm の1x1 cm サイズのセルにおいて、10 mS/cm の電解液伝 導度ではわずか0.4 Ohm の抵抗を生じるだけですが、TCO 抵抗は同じ セルで一般に10~18 Ohm 程度となります。一方、電解液粘度は、濃 度分極、すなわちアノードとカソードとの間の濃度勾配を形成するため に、抵抗損失に重大な影響を及ぼします。

表1 3 種類の標準的 DCS 電解液の電気伝導度

Electrolyte	Solvent	Conductivity (mS/cm at 20 °C)
EL-HPE (Aldrich Prod. No. 791482)	Acetonitrile	16.5-18.5
EL-HSE (Aldrich Prod. No. 791466)	3-Methoxyprionitrile	8–10
EL-HTE (Aldrich Prod. No. 791458)	3-Butoxypropionitrile	2-4

加えて、電解液は 85℃の温度まで(非常に高温気候においてはそれ以上) 化学的かつ光化学的に安定である必要があります。残念ながら多くの場 合、性能と安定性に関する要件は正反対の関係にあります。高い電解液 伝導度および速い」3⁻ 拡散速度は、一般にアセトニトリルのような低粘度・ 低沸点の溶媒を用いた場合に可能となります。たとえば、EL-HPE のよ うな電解液は高い電池性能が要求される場合に適しています。しかし、 アセトニトリル系デバイスでは、長期に及ぶデバイス出力の安定性は得 られません。長期安定性への向上を図るには、より高い沸点と粘度を有 する溶媒¹⁹ またはイオン液体を用いた系^{18,20} が必要です。EL-HSE の優 れた長期安定性は、85℃、暗所(Fraunhofer Institute for Solar Energy Systems)²¹、および 85℃、明所(3G Solar)²² において、100×100 mm から 150×150 mm のサイズのデバイスで実証されています。

白金ペースト

 I_2 /T 酸化還元反応 (redox shuttle) に基づく DSC デバイスは、光化学 的に生成される I_2 の効率的な電気化学的再生を必要とします。 3Γ への I_2 の還元は 2 電子移動プロセスであり、多くの中間体が関与すると考え られるかなり複雑かつ比較的遅い反応です ²³。白金 (Pt) はこれまで見 出された最も効率的な電極触媒であり、効率的デバイスおよび透過性の 実現には、平均 1 ~ 2 nm の膜厚に相当する 2 ~ 4 µg/cm² の量の Pt が 必要です。しかし、電気化学的な I_2 還元が最も高活性な Pt 電極は平滑 な膜ではなく、TCO 表面上に分布した平均粒径約 5 nm の Pt ナノクラ スタ層を基盤とした構造をとります ²⁴。このナノ構造層は、380 ~ 420 ℃で H₂PtCl₆ を熱分解することで作製されます。

PT-1 ペースト(Aldrich 製品番号: 791512)は、主に TEC 基板上に、 簡便かつ高い再現性で Pt 堆積ができるように配合されており、ハイスル ープットスクリーン印刷によってパターン化された堆積が可能となりま す。これにより、不透明 DSC デバイスのみならず半透明 DSC デバイス にも効率的な対電極が作製されます。

銀インク

高品質な接点およびバスバーは、集電時の抵抗損失および導電性基板に よる接触抵抗に起因した抵抗損失を最小限に抑えるために必要であり、 特に、光がより強い場合や、有効面積(active area)が1 cm²を超える デバイスに対して重要です。さらに、電気的接点の作製には、配線のた めのハンダ特性を有することも必要です。銀は、その非常に高い導電性 と良好な耐大気腐食性、および適度なハンダ特性のため、最適な材料で す。銀のコストは高いため、最小使用量で所定の導電性を得ることが重 要です。標準的な太陽電池用シリコンウエハのような高温で使用できる 材料に対しては、ガラスフリット系銀ペーストが用いられ、500℃を超 える温度で加工されます。こうしたペーストはガラス系 DSC には用い られますが、フレキシブルデバイス用ポリマー基板との使用には適せず、 ポリマーを用いた組成が要求されます。

ほとんどのポリマー厚膜(PTF:polymer thick film) 導電性銀インクは、 溶媒キャリアと混合した絶縁性有機樹脂またはバインダーで保持された 銀粒子からなります。このインクは、スクリーン印刷、フレキソ印刷、 インクジェット印刷などの方式を用いて様々な基板上に印刷された後、 オーブンで乾燥します。乾燥プロセスでは、基本的にキャリア溶媒が除 去され、銀粒子間の点接触によって導電性が得られます。しかし、低い アニール温度(<200℃)では、残留する非導電性バインダーにより、得 られる導電性が制限されます。より高い焼成温度では、残留バインダー が加熱除去され導電性が向上しますが、基板材料、または基板と導電性 薄膜との間の接着性に好ましくない影響を及ぼすことがあります。

他の従来型インクとは異なり、DYAG 銀インク(Aldrich 製品番号: 791873、791881、791903)は、熱的に誘起された反応によってナノ メートルサイズの銀粒子が生成されるように設計されています。熱プロ セスの間に「化学的に溶接された(chemically welded)」ブリッジが銀 粒子間に形成されることで連続的な金属同士の接触が見られ(図5を参 照)、従来のインクと比べてはるかに優れた粒子間接触をもたらします。 このように、DYAG 銀インクでは低い硬化温度および低銀含有量でより 高い導電性が得られます。

図5 乾燥・硬化後の DYAG100 インクの SEM 画像

DYAG インクは、ポリエステルや TCO 被覆基板を含む様々な基板に用 いた際に、優れた印刷適性および接着性を実現するように設計されてお り、フレキシブルおよびリジッド基板の双方にとって理想的なものにな ります。表2は、DYAG 銀インクの抵抗値、その他特性を示していま す。これらインクは、DSC 用のみならず有機太陽電池(OPV: organic photovoltaic) 用として、また一般に、RFID タグ (radio frequency identification tag)、ICカード、有機 EL、電子ペーパーなどの新たに登 場したプリンテッドエレクトロニクス用途にも適しています。これらの アプリケーションにおいては、比較的低い硬化温度の他、高い導電性、 柔軟性および信頼性を兼ね備えていることが重要です。

表2 DYAG 銀インクの特性

Silver ink	Specific Resistivity (μΩ·cm)	Solid Content (wt %)	Viscosity (Pa.s) at Shear Rate of 10 s-1 at 25 °C
DYAG 50 (Aldrich Prod. No. 791873)	5–6	80±5	13–17
DYAG 100 (Aldrich Prod. No. 791881)	9–10	80±5	9–12
DYAG 350 (Aldrich Prod. No. 791903)	30-35	70±5	6–9

※ その他の銀インク製品については、4 ページも参照してください。

結論

個々の材料の最適化がデバイスの高性能化に重要であり、例えばチタニ アの透明性や色素の吸光係数の制御による光吸収の最大化があります が、その一方で、各要素間(とりわけ電解液)の相互作用がシステムの 安定性を左右します。個々の材料およびその特性について明確な知見を 得ることは重要ですが、DSC システムとして実際に動作しているそれぞ れの要素の相互作用に注目することも、最終的なデバイスに要求される 特性を知るために必要です。このように十分に特性評価された、信頼で きる製品が広く入手可能になることで、DSC 研究が着実に進み、高い再 現性および信頼性を持つ成果が得られるようになります。さらにその研 究成果は、DSC 技術のより急速な進歩に貢献し、将来の世界的なエネル ギー問題に対処するためのアプローチとして今後も注目されることでし ょう。

NCS

金属錯体色素 DSSC用色素、導電性ペーストなどの製品リストは aldrich.com/dssc をご覧ください。 Structure Name Purity/Dye Content Absorption Prod. No. 791423-250MG λ_{max} 305 nm C101 Dve ≥95%, H-NMR CH₃(CH₂)₄CH₂ CH₃(CH₂)₄CH CH₃(CH₂)₄CH₂S C106 Dve ≥95%, H-NMR λ_{abs} 540, 397, 314 nm 791393-250MG 0.02 mM in ethanol CH3(CH2)4CH2

References

- (1) McEvoy, A.J., Grätzel, M. Sol. Energy Mater. Sol. Cells 1994, 32, 221.
- (2) Gerischer, H., Michel-Beyerle, M.E., Rebentrost, F., Tributsch, H. Electrochim. Acta 1968. 13.1515
- Desilvestro, J., Grätzel, M., Kavan, L., Moser, J., Augustynski, J. J. Amer. Chem. Soc. 1985, (3) 107.2988.
- (4)Patent: WO1991016719
- O'Regan, B., Grätzel, M. Nature 1991, 353, 737. (5)
- Desilvestro, H. Dyesol, http://www.dyesol.com/media/wysiwyg/Documents/media-centre/ (6) Unique_Characteristics_and_Benefits_of_DSC.pdf (accessed November 2013).
- Yella, A., Lee, H.-W., Tsao, H.N., Yi, C., Chandiran, A.K., Nazeeruddin, M.K., Diau, E.W.-G., Yeh, C.-Y., Zakeeruddin, S.M., Grätzel, M. *Science* **2011**, *334*, 629. (7)
- Burschka, J., Pellet, N., Moon, S.-J., Humphry-Baker, R., Gao, P., Nazeeruddin, M.K., Grätzel, M. (8) Nature 2013, 499, 316
- Milliken, D., Desilvestro, H. http://www.dyesol.com/media/wysiwyg/Documents/dsc-resource-library/Solid_or_Liquid_-_July_2013.pdf (accessed November 2013). (9) (10) Braun, J.H. J. Coating. Technol. 1990, 62, 37
- (11) Coletti, G. Prog Photovolt Res Appl. 2013, 21, 1163.
- (12) Ohtani, B., Prieto-Mahaney, O.O., Li, D., Abe, R. J. Photochem. Photobiol. A Chem. 2010, 216, 179.
- (13) Chiba, Y., Islam, A., Watanabe, Y., Komiya, R., Koide, N., Han, L. Jpn. J. Appl. Phys. 2006, 45, L638.
- (14) Zakeeruddin, S.M., Grätzel, M. Adv. Funct. Mater. 2009, 19, 2187
- (15) Zhao, D., Peng, T., Lu, L., Cai, P., Jiang, P., Bian, Z. J. Phys. Chem. C. 2008, 112, 8486.
- (16) Shklover, V., Ovchinnikov, Y.E., Braginsky, L.S., Zakeeruddin, S.M., Grätzel, M. Chem. Mater. 1998, 10.2533
- (17) Klein, C., Nazeeruddin, Md.K., Di Censo, D., Liska, P., Grätzel, M. Inorg. Chem. 2004, 43, 4216.
- (18) Hirata, N., Lagref, J.J., Palomares, E.J., Durrant, J.R., Nazeeruddin, Md.K., Grätzel, M., Di Censo, D. Chem. Eur. J. 2004, 10, 595.
- (19) Jiang, N., Sumitomo, T., Lee, T., Pellaroque, A., Bellon, O., Milliken, D., Desilvestro, H. Sol. Energy Mater. Sol. Cells 2013, 36, 119.
- (20) Harikisun, R., Desilvestro, H. Sol. Energy 2013, 85, 1179. (21) Hinsch, A., Veurman, W., Brandt, H., Loayza Aguirre, R., Bialecka, K., Flarup Jensen, K. Prog. Photovoltaics Res. Appl. 2012, 20, 698.
- (22) Goldstein, J., Yakupov, I., Breen, B. Sol. Energy Mater. Sol. Cells 2010, 94, 638.
- (23) Boschloo, G., Hagfeldt, A. Accounts Chem. Res. 2009, 42, 1819
- (24) Papageorgiou, N., Maier, W.F., Grätzel, M. J. Electrochem. Soc. 1997, 144, 876.

色素増感太陽電池に関する知見およびその構成材料

Structure $\begin{array}{c} & & \\ $	Name K19 Dye	Purity/Dye Content ≥95%, H-NMR	Absorption λ _{abs} 536, 357, 311 nm 0.02 mM in DMF	Prod. No. 791415-250MG
	<i>cis</i> -Bis(lsothiocyanato)bis(2,2'-bipyridyl-4,4'- dicarboxylato)ruthenium(II) N-3 dye	95%, NMR	λ _{abs} 534, 395, 312 nm	703206-250MG 703206-1G
$HO \rightarrow O \rightarrow$	Di-tetrabutylammonium <i>cis</i> -bis(isothiocyanato) bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) N-719 Dye	Dye content ≥ 90% (HPLC), 95%, NMR	λ _{abs} 534, 393, 313 nm	703214-1G
$\begin{array}{c} O = & O \\ HO \\ HO \\ HO \\ HO \\ O = & O \\ O$	N749 Black Dye	≥95%, H-NMR	λ_{abs} 615, 415, 341, 329 nm 0.02 mM in ethanol	791245-100MG 791245-250MG
CH ₃ (CH ₂) ₇ CH ₂ CH ₃ (CH ₂) ₇ CH ₃ CH ₃ (CH	<i>cis</i> -Bis(isothiocyanato)(2,2'-bipyridyl-4,4'- dicarboxylato)(4,4'-di-nonyl-2'-bipyridyl) ruthenium(II) Z-907 Dye	Dye content ≥ 90%, 95%, NMR	λ_{abs} 531, 314, 295 nm	703168-1G
	Titanylphthalocyanine, type l Titanyl phthalocyanine	Dye content > 99% Dye content 95% Dye content > 99%	λ_{max} 700 nm λ_{max} 692 nm λ_{max} 700 nm	791849-1G 404551-1G 792217-1G
	Copper(II) phthalocyanine	>99.95% trace metals basis, triple- sublimed grade	λ_{max} 678 nm	702854-500MG
		Dye content > 99%	λ _{max} 678 nm	546674-5G 546682-200MG
L'I N L		Dye content 90%	λ_{max} 678 nm	252980-5G 252980-25G 252980-100G
	Tin(IV) 2,3-naphthalocyanine dichloride	99%	λ _{max} ~875 nm	757330-250MG

aldrich.com/ms-jp

Structure	Name	Purity/Dye Content	Absorption	Prod. No.
	Zinc phthalocyanine	Dye content 97%	λ _{max} 701 nm	341169-5G 341169-25G
	Indium(III) phthalocyanine chloride	Dye content > 95%	λ _{max} 697 nm	791857-1G
	Vanadyl phthalocyanine	Dye content > 90%	λ _{max} 701 nm	791997-500MG

メタルフリー有機色素

Structure	Name	Burity/Duc Content	Absorption	Drad No.
Structure	Coumarin 102	Dve content 99%	Absorption	546151-100MG
	Countriant 102	Dyc content 9970	M _{max} Job IIII	
CF3	Coumarin 153	Dye content 99%	$\lambda_{\rm max}$ 422 nm	546186-100MG
	Coumarin 30	Dye content 99%	λ_{max} 413 nm	546127-100MG
	Coumarin 6	≥99%	$\lambda_{\rm max}$ 443 nm	546283-100MG
O OH O N S S S O N CH ₃	D149 Dye	98%, HPLC	λ _{max} 531 nm	736015-100MG
	D102 Dye	95%, HPLC	λ _{max} 499 nm in DMF	745944-200MG
$(\mathbf{y}_{n}, \mathbf{y}_{n}) \in \mathbf{CH}_{2}(CH_{2})_{0}CH_{3}$	D205 Dye	97%, HPLC	λ_{abs} 531, 392 nm	745618-100MG

色素増感太陽電池に関する知見およびその構成材料

ナノ粒子

DSSC用色素、導電性ペーストなどの製品リストは aldrich.com/dssc をご覧ください。

Name	Form	Particle Size (nm)	Prod. No.
Titanium(IV) oxide, anatase	nanopowder	<25	637254-50G 637254-100G 637254-500G
Titanium(IV) oxide, mixture of rutile and anatase	nanopowder	<100 (BET)	634662-25G 634662-100G
	nanoparticles paste	~21 (primary particle size of starting nanopowder) <250 (DLS)	700355-25G
	dispersion nanoparticles	~21 (primary particle size of starting nanopowder) <150 (DLS)	700347-25G 700347-100G
Titanium(IV) oxide, rutile	nanopowder	<100	637262-25G 637262-100G 637262-500G
Titanium(IV) oxide, brookite	nanopowder	<100	791326-5G
Zinc oxide	nanopowder	<100	544906-10G 544906-50G
	nanopowder	<50 (BET)	677450-5G

ペースト

Name	Composition	Particle Size	Prod. No.
Silver	≥ 75%	particle size <5 nm (20%) particle size 200 nm (80%)	735825-25G
Titania paste, transparent	19.0 wt. %	20 nm	791547-10G 791547-20G
Titania paste, active opaque	27.0 wt. %	avg. part. size ≤450 nm (scatter) avg. part. size 20 nm (active)	791555-5G 791555-20G
Titania paste, reflector	20.0 wt. %	150 - 250 nm	791539-5G 791539-20G
Platinum paste, screen printable	-	-	791512-20G

aldrich.com/ms-jp

電解液

Name	Form	Conductivity (mS/cm)	Prod. No.
EL-HSE high stability electrolyte	liquid	8-10 at 20 ℃	791466-10ML 791466-50ML
EL-HTE high temperature electrolyte	liquid	2-4 at 20 ℃	791458-5ML 791458-25ML
EL-HPE high performance electrolyte	liquid	16.5-18.5 at 20 ℃	791482-10ML 791482-50ML

有機ホール輸送材料

Structure	Name	Description	Prod. No.
$H_{3}CO - V - V - V - V - V - OCH_{3}$ $H_{3}CO - V - V - V - V - V - OCH_{3}$ $H_{3}CO - V - V - V - V - OCH_{3}$ $OCH_{3} OCH_{3} OCH_{3}$	Spiro-MeOTAD	λ_{abs} 385, 306 nm in dichloromethane	792071-1G
Ph Ph-N Ph-N Ph Ph Ph Ph Ph	2,2;7,7'-Tetrakis(N,N-diphenylamino)-9,9- spirobifluorene Spiro-TAD	99%, HPLC absorption 378 µm in THF	765007-1G
CH 2(CH 2) 4CH 3	Poly(3-hexylthiophene-2,5-diyl)	99.995% trace metals basis electronic grade average M _n 54,000-75,000 (>98% head-to-tail regioregular (HNMR)) regioregular	698997-250MG 698997-1G 698997-5G
LJ _R	Poly(3-hexylthiophene-2,5-diyl)	99.995% trace metals basis electronic grade average M_n 15,000-45,000 (>95% head-to-tail regioregular (HNMR)) regioregular	698989-250MG 698989-1G 698989-5G
	Poly(3-hexylthiophene-2,5-diyl)	regioregular	445703-1G
	Poly(3-hexylthiophene-2,5-diyl)	regiorandom	510823-1G
$\left[\left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Polypyrrole	composite with carbon black doped proprietary organic sulfonic acid as dopant	530573-25G
	Polypyrrole	proprietary organic sulfonic acid as dopant	577030-5G 577030-25G
	Polypyrrole	coated on titanium dioxide doped proprietary organic sulfonic acid as dopant	578177-10G
	Polypyrrole	5 wt % dispersion in H_2O doped proprietary organic acids as dopant	482552-100ML
$ \left[\left[0 & \begin{array}{c} & \\ 0 & \\ 0 & \\ 0 & \end{array} \right]_{n}^{0} & \begin{array}{c} & \\ 0 & \\ 0 & \\ 0 & \end{array} \right]_{n}^{0} & \begin{array}{c} & \\ 0 & \\ 0 & \\ 0 & \\ 0 & \\ 0 & \end{array} \right]_{n}^{0} & \begin{array}{c} & \\ & \\ 0 & $	Polypyrrole- <i>block</i> -poly(caprolactone)	0.3-0.7 wt. % (dispersion in nitromethane) <i>p</i> -toluenesulfonate as dopant	735817-25G
	Polyaniline (emeraldine salt)	composite (20 wt.% polyaniline on carbon black) proprietary organic sulfonic acid	530565-5G 530565-25G
L HJ ^x L X-HJ ^y J ^u	Polyaniline (emeraldine salt)	composite (30 wt.% polyaniline on nylon)	577073-10G
	Polyaniline (emeraldine salt) short chain, grafted to lignin	-	561126-10G

溶液プロセスにより作製される有機太陽電池用 低分子ドナー材料の開発

Abby-Jo Payne and Gregory C. Welch Dalhousie University, Department of Chemistry 6274 Coburg Road, Halifax, Nova Scotia, Canada B3H 4R2 Email: gregory.welch@dal.ca

はじめに

溶液プロセスにより作製される有機太陽電池(OPV: organic photovoltaic) デバイスは、作製が容易であり、印刷またはコーティン グ技術による低コスト生産の実現が期待されるうえ、軽量でフレキシブ ルな基板上に組み込むことができるため、クリーンエネルギー生成に有 望な技術として登場しました¹。最も成功した OPV デバイスは、ポリマ ー (アクセプタ)とフラーレン (ドナー)をブレンドした活性層を有す るタイプで、バルクヘテロ接合(BHJ: bulk heterojunction)太陽電 池として広く知られています²。これらシステムの電力変換効率(PCE: power conversion efficiency)は単層デバイスで 9.2%に達しており³、 再生可能、軽量および低コストなエネルギー源としてすでに大きな期待 が寄せられています。最近の論文によれば、最新のポリマー太陽電池 (PSC: polymer solar cell)の電力変換効率は8%を超えています。しかし、 この新たな太陽電池技術の実用化には、電力変換効率をさらに高め、目 標値(商業用途は10%、タンデム型太陽電池は10.6%)を達成すること が必要とされています⁴。 最近、優れた光学的、電子的特性を有する新規低分子ドナー材料を OPV デバイスに使用した報告がみられるようになりました^{5,6}。こうした低分 子化合物は、ポリマーを用いた OPV デバイスに対して次のような利点 をもたらします。(a) 化学構造が明確で分子量依存性をまったく示さな いために、純度は高く、バッチ間のばらつきが限定されます。(b) – 般的には、より組織化されたナノ構造を示すために電荷キャリア移動度 はより高くなります。さらに、低分子材料の場合、その化学的性質は微 妙な構造変化にも敏感であるため、電子エネルギー準位、光吸収および 自己組織化特性を体系的に調整することにより、デバイス性能を最大限 に高めることができます。[6,6]-phenyl-C₇₁-butyric acid methyl ester (PC₇₁BM、Aldrich 製品番号: 684465)のようなフラーレンアクセプ タと組み合わせた場合、低分子系太陽電池は 8% を超える PCE を達成し ています^{7,8}。本論文では、ここ数年における低分子系有機太陽電池の進 歩を取り上げ、性能向上をもたらしたキーとなる構造的特長を紹介しま す。

デバイス動作およびドナー材料の分子設計

OPV における光電流生成の詳細な解析¹⁻³ についてここでは取り上げま せんが、有機太陽電池の場合、自由電荷キャリアの生成に2つの材料 が必要です。図1A にデバイスの動作原理を示しました。光吸収、励起 子生成、電荷分離および電荷輸送には、高いイオン化ポテンシャル(電 子ドナー)および高い電子親和力(電子アクセプタ)を有する化合物の 組み合わせが重要です。OPV デバイスには電子アクセプタとして可溶 性フラーレン誘導体が広く使用されていますが、これは低い最低空軌 道(LUMO)準位および等方性の電子移動度に起因しています(図1B)。 OPV 性能が向上している主な要因は、フラーレン類とブレンドされた 場合、光吸収や電荷輸送を最大化し、かつ秩序性の高いナノ構造を形成 するように設計された新規「ドナー」材料が開発されているためです。

図1 A) 有機太陽電池の動作を示した模式図(TCO: transparent conducting oxide、透明導電性酸化物)。B) 一般的に用いられている可溶性フラーレン誘導体、および C) 一般的な有機色素からなる初期の低分子ドナー材料の化学構造式 π共役ポリマーが最も高い注目を集めていますが、低分子化合物も効率 的な「ドナー」材料として戦略的に設計することが可能です。

溶液プロセスによる BHJ 太陽電池においてフラーレンアクセプタとペア となる低分子ドナーを設計する場合、以下のようなパラメータについて 考慮する必要があります。(a) フォトンを最大限吸収するために、近赤 外域まで広がる強い光吸収 (λ_{max} を光量子束が最大となる 700 nm 付 近にする必要があります)、および 50,000 M⁻¹ cm⁻¹を超える吸光係数(ε) が望まれます。(b) よく用いられる高い仕事関数を持つアノードにマッ チし、その一方で、開放電圧を最大にする -5 ~ -5.5 eV の比較的深い最 高被占軌道 (HOMO) エネルギー準位が望まれます。(c) 高い電荷キャ リア移動度を得るために重要な分子間 π - π 相互作用を促進させる、比 較的平面の分子構造が望まれます。(d) 溶液堆積法による薄膜作製を可 能にする、十分な溶液粘度および可溶性が望まれます。(e) グラムオーダ 一量の合成と化合物ライブラリの作製の両方を実現するような、簡便か つ高収率で、高度に調整可能な合成手法が望まれます。いくつかの研究 グループがこれらの点を念頭に置き、太陽電池用ポリマーに対抗し得る、 溶液プロセス可能な一連の低分子化合物を開発しています。

初期の低分子ドナー化合物

溶液プロセスによる高性能な低分子バルクヘテロ接合太陽電池 (SM-BHJ)の開発は、一夜にして成し遂げられたわけではなく、いくつかの研 究グループに端を発した長い研究の歴史があります。歴史的には、低分 子ドナーはまさに「小さく」なる傾向にあります。溶液から均一な薄膜 を生成することは難しかったため、主に熱蒸着法が利用されてきました?。 2000年代中頃に、Roncali らが PC61BM と共に溶液プロセスを用いる ことのできる四面体形オリゴチオフェンドナー分子を開発し、PCE が約 0.2%の太陽電池を作製しました¹⁰。同時期に、Anthony らは、PC61BM とペアにした場合に約1%のPCEが得られる一連の可溶性アセン誘導体 を報告しました¹¹。これら初期の化合物の大きな問題は、太陽スペクト ルと重なるスペクトル領域が乏しく、600 nm を超える光吸収には限り がある点でした。それでもなお、これらの成果は、低分子ドナーを用いて、 溶液プロセスによって実際に動作する太陽電池デバイスが実現可能であ ることを明らかした点で重要です。この集光特性の問題を解決するため、 強い吸光性色素の機能化に関する論文が 2008 ~ 2010 年に発表されま した。Zeisel および Roncali は、吸光性の高い(ε > 100,000 M⁻¹cm⁻¹) BODIPY 色素を可溶化することが可能であり、π 共役主鎖にオリゴオキ シエチレン鎖を結合させることで溶液から膜を形成できることを示しま した。PC61BM と共にデバイスに組み込んだ場合、1% を超える PCE が 得られ、最も重要なことに 750 nm を超えた波長域での光電流生成が達 成されました¹²。それ以来、BODPIY 系 SM-BHJ 太陽電池の PCE は約 5% まで向上しています¹³。Marks¹⁴ および Würthner¹⁵ の両研究グルー プは、近赤外域まで大きく広がったブロードで強い薄膜吸収スペクトル を示す、官能基化スクアライン(squaraine)色素について報告してい ます。PC₆₁BM を用いたデバイスでは1~2%の PCE が得られました。 しかし、HOMO 準位が高く、活性層のモルフォロジーに問題があった ため、低い開放電圧 (V_{oc}) および小さな曲線因子 (FF: fill factor) の点 で最終的に課題が残っています。

また、Würthnerは BHJ 太陽電池にメロシアニン色素(Aldrich 製品番号:747211)を用いました。この色素は合成が容易であり、太陽スペクトルの赤色領域で強い吸収を示します。可溶性フラーレン誘導体とと

もに溶液プロセスによって 2.5% 以上の PCE が得られました¹⁶。これら のデバイスはスクアライン系デバイスと比べてより高い Voc を有してい ましたが、小さな曲線因子(FF)が再び課題となりました。2000年代 後半に Nguyen らは、吸光性の高いジケトピロロピロール色素(Aldrich 製品番号:753912、753920)を利用し、狭いバンドギャップを有す る、溶液プロセスの可能な一連の低分子化合物を OPV デバイス用に作 製しました。その一例として、2-エチルヘキシルアルキル鎖をアミド窒 素原子に組み込むことで有機溶媒に可溶化し、末端の 2- ベンゾフランユ ニットによって π 電子非局在化の拡張と自己組織化を可能とする誘導 体があります。この化合物は DPP(ThBzFu)2 と呼ばれ、SM-BHJ 太陽電 池におけるドナー材料として、700 nm を超える長波長側の高い吸光性 および深い HOMO 準位、さらに市販の出発原料からの単純な3ステッ プ合成など、理想的な化合物に近い光学的、電子的特性を有しています。 DPP(ThBzFu)2:PC71BM2活性層を用いて作製された太陽電池は、4%を 超える PCE を示し、この記録は 2 年間破られませんでした ¹⁷。このよう な高い PCE を達成するための重要なパラメータは、PC71BM よりも高い 濃度の DPP(ThBzFu))の使用、ナノスケールでの十分な相分離を得るた めの活性層の熱アニールであったことから、活性層プロセスの重要性が 示されました。Roncali、Anthony、Marks、Würthner、Nguyen、お よび他の研究者による可溶性低分子ドナーに関する初期研究は、その後 の大きな飛躍的発展への道を開きました。Nguyen¹⁸、Baurele¹⁹および Zhan²⁰による3つの優れた総説には、これらに関する詳細が述べられて います。

高性能低分子ドナー材料

Heeger および Bazan は、既報文献の成果を基礎とし、また低分子ドナー開発に必要な特有の条件を考慮することで、BHJ 太陽電池用ドナー材料として理想的な特性を示す化合物を見出すための高度なモジュール式分子骨格を報告しています ^{5,21}。その構造は、両端に末端ユニット(end cap unit)が結合しているアクセプタ-ドナー-アクセプタ(ADA)コアからなります。2つのアクセプタは、共役主鎖全体にわたって電子親和力を増加させるため、深い HOMO 準位を得ることができます。一方、末端ユニットは π 共役系を拡張し、自己組織化特性を調整する働きをします。この種の化合物に重要なのは、アクセプタとして pyridyl[2,1,3] thiadiazole (PT) ビルディングブロックを用いる点です。電子ドナーとカップリングした際に強い分子内電荷移動が促進され、狭いバンドギャップとなります。さらに、PTの非対称性は選択的な反応性をもたらすため、単官能性材料を高収率で合成することが可能となります。

これら化合物の2つの合成経路を図24に示しました。合成法1では、化合物の内側から外側へ合成されるため、最終的にはピリジル窒素原子がドナーコアに近い位置に存在する構造となります。合成法2では、外側から内側へと合成されるため、ピリジル窒素原子はドナーコアに対して遠い位置に存在します。これらの単純な3ステップ合成によって、ドナーコアおよび末端ユニットが組み込まれた一連の低分子化合物がすべて合成されました(図28)。合成した多くの誘導体の中で、2-ethylhexyl置換dithienosilole(DTS)ドナーおよび2-hexylbithiophene末端ユニットを用いた誘導体が、ほぼ理想的な光学的、電子的特性を示すことがわかりました。図2Cに示した化合物 *d*-DTS(PTT₂)2(6)は、固体状態において(光量子束がほぼ最大となる)700 nm での吸収ピークを有する強い長波長吸収、ならびに HOMO: -5.2 eV、LUMO:-3.6 eV を示し、フラーレン誘導体との適合性を有し ています。分子主鎖に対して垂直および平行なアルキル側鎖を有するため、高い有機溶媒可溶性(>20 mg/mL)があり、均一な膜を形成することができます。加えて、平面的な構造は分子内 π 電子非局在化および分子間 π スタッキングにとって重要であり、そのため 0.1 cm⁻¹V/s オーダーの高い電荷キャリア移動度を示します。*d*-DTS(PTT2)2 を PC71BMと共に BHJ デバイスに用いることで、3.2% という初期の PCE が得られました。デバイス構造およびプロセス条件を最適化し、酸化モリブデンホール輸送層に少量の 1,8-ジヨードオクタン (DIO、Aldrich 製品番号:250295)を添加することにより、PCEは 5.6% まで向上しました。デバイス性能をさらに向上させるために、Bazan らは、ピリジル窒素原子が中央の DTS ユニットに近い位置にある異性体 *p*-DTS(PTT2)2 は、分子構造が「バナナ」形に少し変化することで自己組織化特性がより高まり、ホール移動度や吸光度が増加し、最終的に PCE

は6.7% とより高くなりました²¹。この結果により、溶液プロセスによる低分子 BHJ デバイスが、PCE の点でポリマー系デバイスに匹敵することが初めて示されました。さらに、ピリジル窒素原子を C-F 結合で置換した *p*-DTS(FBPTT₂)2 (または *p*-DTS(FBPTTh₂)2、Aldrich 製品番号: 772380、(8))は、化合物自体の安定性が向上し、同じ条件下で作製した場合に PCE は 7% を上回りました。デバイスをより最適化することでPCE 9% という結果も得られています⁷。非常に興味深いことに、広く使用されている benzo[2,1,3] thiadiazole アクセプタを利用した類似化合物(化合物 9)は、同様の条件下で作製した場合、迅速な電荷輸送に必要な秩序あるナノ構造を形成できないために、光起電力特性をまったく示しませんでした⁵。こうした結果から、分子構造に微妙な変更が生じると、自己組織化プロセスと同様にデバイス性能も影響を受けることが明らかになりました。

図2 Bazan らが報告した可溶性低分子ドナー化合物の化学構造。A) エンドキャップ ADA タイプ化合物の一般的な 3 ステップ合成経路。ピリジル窒素原子がドナー コアに対して近い位置(合成法 1)、および離れた位置(合成法 2)に存在する化学構造が得られます。B)ドナーおよび末端ユニットとして用いられるビルディングブ ロックの例。C)高性能低分子ドナー材料の例。ヘテロ原子置換が電力変換効率に影響を及ぼすことがわかります。

aldrich.com/ms-jp

Chen らは同時期に、SM-BHJ 太陽電池に組み込んだ場合に優れた性能 を示す、バンドギャップの狭い一連のオリゴチオフェンを報告しまし た。彼らは、電子求引性部位を持つ長いセプチチオフェン末端ユニッ トによって、太陽スペクトルの赤色領域へと広がる吸光特性、および 高い Voc を得るために必要な深い HOMO 準位を有する材料が得られる ことを明らかにしました。さらに、6つのチオフェンユニットに長いア ルキル側鎖を組み込むことで、一般的な有機溶媒に対する可溶性が高 まり、溶液からの均一な薄膜形成が可能となりました。ジシアノビニ ル末端ユニット(図3A、10)を有する初期の誘導体を PC61BM と共 に BHJ 太陽電池に用いることで、PCE 2.5% のデバイスが得られ、さら にこのデバイスの最適化によって PCE は 3.7% に達しました。Chen ら は末端ユニットの体系的スクリーニングによって、吸光特性、HOMO/ LUMO 準位、および材料の可溶性が容易に調整できることを示しまし tc. 1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione (11), indan(1,3) dione (12)、n-octyl cyanoacetate (13)、および 3-ethylrhodanine (14) を末端に含む化合物の場合、PCE の最高値として 4~6% を示しま した。化合物 12 および PC61BM による太陽電池は、indan(1,3)dione 部 分が強い自己組織化傾向を持つため、72%もの非常に高い曲線因子(FF) を達成しました。化合物 12 はクロロホルムに対して >200 mg/mL も の著しく高い溶解性を示し、大規模製造に必要な厚膜(>300 nm)の形 成に重要となります。3-ethylrhodanine 末端を有する化合物 14 は、有 機溶媒への高い溶解性、良好な膜形成特性、および長波長吸収など、全 体的に優れた性質を示すことから、一連の化合物の中で最も高い PCE が得られています。化合物14の中心にあるチオフェン環をより大きく リジッドなベンゾビチオフェン共役ユニットで置換すると、電荷輸送特 性が改善され、デバイス性能が向上(化合物 15 の PCE=7.4%)しまし た。主鎖に対して垂直方向の π 共役系を増やすことで光電流の生成が向 上し、ポリジメチルシロキサン(PDMS、Aldrich 製品番号:423785、 482064、482145)を添加すると、8.1% という高い PCE が達成されま した(化合物 16) 8。こうした成果により本研究領域に大きな関心が寄 せられ、溶液プロセスによる SM-BHJ 太陽電池は、最も有望なクリーン エネルギー技術の1つとして確立されています。

図3 Chen らが報告した可溶性低分子ドナー化合物の化学構造⁶。A) 末端にジ シアノビニルユニットを有するセプチチオフェンコアからなる初期の構造 B) 高性能化のための末端ユニットの展開 C) ベンゾビチオフェン π 共役コアを有 する低分子化合物

結論および将来展望

過去4年間、低分子ドナー化合物の独創的な分子設計により、溶液プロ セスにより作製された低分子太陽電池の電力変換効率はほぼ倍増し、約 4% から約 8% に向上しました (図 4A)。Bazan および Chen の研究は、 初期の設計原理に加えて、分子主鎖のなかで6つを超える π 共役ユニ ットで低分子ドナーを構築し、かつ十分な数のアルキル側鎖で修飾する ことにより、良好な可溶性および溶液からの均一な膜形成が可能である ことを明らかにしました。高性能ドナーの開発では、1種類ではなくむ しろ一連の複数の化合物が合成され、構造・特性・機能性の関係が評価 されたことは注目すべき点であり、この高度に調節可能な合成法の重 要性は非常に大きいものです。2012年に PCE が 6% を超えて以降、低 分子ドナー開発についての論文数は指数関数的に増加し(図4Bおよび 4C)、現在では PCE が 5 ~ 6% のデバイスに関する報告が大半を占めて います。これまで、低分子ドナー化合物が脚光を浴びていますが、BHJ 太陽電池におけるフラーレンに置き換わる、ドナーーアクセプタ型の線 形低分子アクセプタ化合物の設計および合成の研究も新たな注目を集め ています 22。これら化合物は、高性能ドナーに用いられているビルディ ングブロックから構成され、高コスト効率での合成や、光化学的安定性、 高い集光性が得られる可能性を秘めています(図5)。現在までに光電変 換効率は4%に達し、今後も高効率化が期待されています。本分野の多 くの研究者、および利用可能な幅広いビルディングブロックの開発によ って、溶液プロセスにより作製される低分子太陽電池の光電変換効率が 10%に達するのは、それほど遠くない将来であろうと予測されます。

謝辞

Dalhouise 大学、NSERC および Canada Research Chairs プログラムの 支援に感謝いたします。

References

- (1) Su, Y.-W., Lan, S.-C., Wei, K.-H. Mater. Today 2012, 15, 554.
- (2) Li, G., Zhu, R., Yang, Y. Nat. Photonics 2012, 6, 153.
- (3) He, Z., Zhong, C., Su, S., Xu, M., Wu, H., Cao, Y. Nat. Photonics 2012, 6, 591.
- (4) You, J., Dou, L., Yoshimura, K., Kato, T., Ohya, K., Moriarty, T., Emery, K., Chen, C.-C., Gao, J., Li, G., Yang, Y. Nat. Commun. 2013, 4, 1446.
- (5) Coughlin, J.E., Henson, Z.B., Welch, G.C., Bazan, G.C. Accounts Chem. Res. 2013, DOI: 10.1021/ ar400136b.
- (6) Chen, Y., Wan, X., Long, G. *Accounts Chem. Res.* **2013**, DOI: 10.1021/ar400088c.
- Gupta, V., Kyaw, A.K.K., Wang, D.H., Chand, S., Bazan, G.C., Heeger, A.J. *Sci. Reports* 2013, *3*.
 Zhou, J., Zuo, Y., Wan, X., Long, G., Zhang, Q., Ni, W., Liu, Y., Li, Z., He, G., Li, C., Kan, B., Li, M., Chust, J. Law, Gung, Gan, 2020, 212 (2014).
- Chen, Y. J. Am. Chem. Soc. 2013, 135, 8484.
 Chen, Y.-H., Lin, L.-Y., Lu, C.-W., Lin, F., Huang, Z.-Y., Lin, H.-W., Wang, P.-H., Liu, Y.-H., Wong, K.-T., Wen, J., Miller, D.J., Darling, S.B. J. Am. Chem. Soc. 2012, 134, 13616.
- Karpe, S., Cravino, A., Frère, P., Allain, M., Mabon, G., Roncali, J. Adv. Funct. Mater. 2007, 17, 1163.
 Lloyd, M.T., Mayer, A.C., Subramanian, S., Mourey, D.A., Herman, D.J., Bapat, A.V., Anthony, J.E., Malliaras, G. G. J. Am. Chem. Soc. 2007, 129, 9144.
- Rousseau, T., Cravino, A., Bura, T., Ulrich, G., Ziessel, R., Roncali, J. Chem. Commun. 2009, 1673.
- (13) Bura, T., Leclerc, N., Fall, S., Lévêque, P., Heiser, T., Retailleau, P., Rihn, S., Mirloup, A., Ziessel, R. J. Am. Chem. Soc. 2012, 134, 17404.
- (14) Silvestri, F., Irwin, M.D., Beverina, L., Facchetti, A., Pagani, G.A., Marks, T.J. J. Am. Chem. Soc. 2008, 130, 17640.
- (15) Mayerhöffer, U., Deing, K., Gruß, K., Braunschweig, H., Meerholz, K., Würthner, F. Angew. Chem. Int. Ed. 2009, 48, 8776.
- (16) Bürckstümmer, H., Kronenberg, N. M., Gsänger, M., Stolte, M., Meerholz, K., Würthner, F. J. Mater. Chem. 2010, 20, 240.
- (17) Walker, B., Tamayo, A. B., Dang, X.-D., Zalar, P., Seo, J. H., Garcia, A., Tantiwiwat, M., Nguyen, T.-Q. Adv. Funct. Mater. 2009, 19, 3063.
- (18) Walker, B., Kim, C., Nguyen, T.-Q. Chem. Mater. 2011, 23, 470.
- (19) Mishra, A., Bäuerle, P. Angew. Chem. Int. Ed. 2012, 51, 2020.
- (20) Lin, Y., Li, Y., Zhan, X. Chem. Soc. Rev. 2012, 41, 4245.
- (21) Sun, Y., Welch, G. C., Leong, W. L., Takacs, C. J., Bazan, G. C., Heeger, A. J. Nat. Mater. 2012, 11, 44.
- (22) Eftaiha, A. F., Hill, I. G., Sun, J.-P., Welch, G. C. J. Mater. Chem. A 2013. DOI: 10.1039/C3TA14236A.

図4 A)2006~2013年において報告された、溶液プロセスによる低分子太陽電池の電力変換効率の最高値をプロットしたグラフ。Web of Knowledgeを用い、「solution processed small molecule solar cells」のトピックで検索して得られた、2003 年以降のB)発表論文数とC)引用数。

図5 溶液プロセスによるバルクヘテロ接合太陽電池において、フラーレンに替わるアクセプタとして利用される線形のドナーーアクセプタ型低分子化合物の例

p型低分子有機半導体

最新製品情報は aldrich.com/psmall をご覧ください。

Structure	Name	Optical Properties/Mobility	Purity	Prod. No.
$\begin{array}{c} H_3C \\ H_3C \\ S \\ S \\ H_3C \\ CH_3 \\ CH_2 \\ LCH_2 \\ S \\ CH_3 \\ CH_2 \\ LCH_2 \\ S \\ S \\ CH_2 \\ LCH_2 \\ S \\ S \\ CH_2 \\ LCH_2 \\ S \\ S \\ CH_2 \\ LCH_2 \\ LCH_2$	DTS(FBTTh ₃) ₂	λ_{max} 590 nm in chloroform	-	772380-100MG
$\begin{array}{c} H_3C\\ H_3C\\ Si\\ CH_3(CH_2)_4CH_2 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	DTS(PTTh ₂) ₂	λ_{max} 655 nm in chloroform	-	772372-100MG
H ₃ C CN N CN H ₃ C CN N CN H ₃ C	2-[[7-(5-N,N-Ditolylaminothiophen-2-yl)- 2,1,3-benzothiadiazol-4-yl]methylene} malononitrile	λ_{abs} 662-664 nm in dichloromethane	99%, HPLC	777293-250MG
	2-[7-(4-Diphenylaminophenyl)-2,1,3-benzo- thiadiazol-4-y]]methylenepropanedinitrile	λ_{max} 549 nm in dichloromethane	96%	790524-100MG
CN CN CN N S H ₃ C CN CN CN CN CN CN CN CN CN CN CN CN CN	2-[(7-[4-[N/N-Bis(4-methylphenyl)amino] phenyl]-2,1,3-benzothiadiazol-4- yl)methylene]propanedinitrile	λ_{abs} 570 nm in dichloromethane	97%, HPLC	777048-500MG
$C_{\theta}H_{13}$	SMDPPEH	$\lambda_{abs}644$ nm in methylene chloride ${\sim}10^{-4}cm^2 {\Lambda}{\prime}s$	97%, HPLC	753912-250MG
$\begin{array}{c} CH_3(CH_2)_{B}CH_2\\ O = \bigvee_{N} N \\ CH_3(CH_2)_{4}CH_2\\ CH_2(CH_2)_{4}CH_2\\ CH_2(CH_2)_{6}CH_2\\ CH_2(CH_2)_{6}CH_3\\ CH_3(CH_2)_{6}CH_3\\ CH_3(CH_2)_{6}CH_3(CH_2)_{6}CH_3\\ CH_3(CH_2)\\ CH_3(CH_2)_{CH$	SMDPPO	$\lambda_{abs}644$ nm in methylene chloride	-	753920-250MG
	2,4-Bis[4-(N,N-diphenylamino)-2,6- dihydroxyphenyl]squaraine	λ _{max} 720 nm	98%	757233-1G
	2,4-Bis[4-(N,N-dibenzylamino)-2,6- dihydroxyphenyl]squaraine	λ_{max} 640-646 nm in chloroform	97%	757268-1G
H_3C	2,4-Bis[4-(N,N-diisobutylamino)-2,6- dihydroxyphenyl] squaraine	λ _{max} 700 nm	97%	758337-1G
	Dinaphtho[2,3-b:2;3'-f]thieno[3,2-b] thiophene DNTT	2 cm²/V·s	99%, sublimed grade	767638-100MG 767638-500MG
	2,7-Diphenyl[1]benzothieno[3,2-b][1] benzothiophene DPh-BTBT	2 cm²/V·s	99%, sublimed grade	767603-100MG 767603-500MG
C ₆ H ₁₇ S C ₆ H ₁₇	2,7-Dioctyl[1]benzothieno[3,2-b][1] benzothiophene C ₈ -BTBT	5.5 cm²/V·s	99+%	747092-100MG 747092-250MG

溶液プロセスにより作製される有機太陽電池用低分子ドナー材料の開発

Purity

grade

97%

97%

>99%, HPLC

97%, sublimed grade

95%, sublimed

Prod. No.

767611-100MG 767611-500MG

767646-100MG 767646-500MG

768677-500MG

754080-250MG

754102-100MG

Optical Properties/Mobility

4.6×10⁻³ cm²/V·s

10⁻² cm²/V·s

>0.5 cm²/V·s

0.3 cm²/V·s

1 cm²/V·s

Name

DT-BDT

NDT

ADT

TES-ADT

2,6-Diphenylbenzo[1,2-*b*:4,5-*b*]dithiophene DPh-BDT

2,6-Ditolylbenzo[1,2-b:4,5-b']dithiophene

Naphtho[1,2-b:5,6-b']dithiophene

Structure
H ₃ C-CH ₃
S S S S S S S S S S S S S S S S S S S
<pre>subscripts</pre>
$H_{3}C \underbrace{\begin{array}{c} CH_{3} \\ SI \end{array}}_{H_{3}}CH_{3}$
S C C C C C C C C C C C C C C C C C C C
H ₃ CCH ₃
~сн₃
C ₆ H ₁₃ -C ₆ C ₆ H ₁₃ -C ₆ H ₁₃ -C ₆ H ₁₃ -C ₆ H ₁₃ -C
S S S S S
CH ₃ (CH ₂) ₄ CH ₂
\bigcirc
H3C K H3C

CH3

сн.

H₃C

H₃C

	5,5'-Di(4-biphenylyl)-2,2'-bithiophene	0.04 cm²/V·s	97%	695947-1G
	FTTF	0.3 cm²/V·s	sublimed grade	754056-250MG
	DH-FTTF	0.05-0.12 cm²/V·s	95%	754064-250MG
	5,5 ^{,5} "-Bis(2 ^{,,,} ,2 ^{,,,} 5 ^{,,} 2 ^{,,,} 5 ^{,,} 2 ^{,,,} 5 ^{,,} 2 ^{,,,} 5 [,] ,2 ^{,,,} 5 ^{,,} 2 ^{,,,,} 5 ^{,,} 2 ^{,,,} 2 [,]	$\lambda_{abs}530$ nm in DMSO	≥97%	745596-250MG
	a-Sexithiophene	0.075 cm²/V·s	-	594687-1G
	5,5‴"-Dihexyl-2,2':5',2":5",2"':5"",2"':5"",2""- sexithiophene	0.13 cm²/V·s	-	633216-500MG
	Pentacene	0.4-3 cm²/V·s	≥99.995% trace metals basis, triple- sublimed grade	698423-500MG
	Pentacene	0.4-3 cm²/V·s	≥99.9% trace metals basis, sublimed grade	684848-1G
	Pentacene	0.4-3 cm²/V·s	99%	P1802-100MG P1802-1G P1802-5G
	6,13-Diphenylpentacene	UV absorption 308 nm in dichloromethane 8×10 ⁻⁵ cm²/V·s	98%	760641-1G
	6,13-Bis((triethylsily!)ethynyl)pentacene TES pentacene	10 ⁻⁵ cm ² /V·s	≥99%, HPLC	739278-100MG 739278-500MG
	6,13-Bis(triisopropylsilylethynyl)pentacene TIPS pentacene	1.8 cm ² /V·s	99+%, HPLC	716006-250MG 716006-1G

n型低分子有機半導体

最新製品情報は aldrich.com/nsmall をご覧ください。

• : .				
Structure	Name	Optical Properties/Mobility	Purity/Dye Content	Prod. No.
F ₃ C S CF ₃	2,2'-Bis[4-(trifluoromethyl)phenyl]-5,5'-bithiazole	1.83 cm²/V·s	97%	749257-500MG
$ = \begin{pmatrix} N \\ $	PI-BT	λ_{max} 448 nm in THF	>97%	790893-250MG 790893-1G
CH ₃ CH ₃	4-(1,3-Dimethyl-2,3-dihydro-1 <i>H</i> -benzoimidazol-2-yl)- <i>N</i> , <i>N</i> -diphenylaniline	λ_{abs} 308 nm in dichloromethane	98%	763721-1G
$\underset{CH_3}{\overset{CH_3}{\underset{CH_3}{\overset{CH_3}{\overset{CH_3}}}}}$	4-(2,3-Dihydro-1,3-dimethyl-1 <i>H-</i> benzimidazol-2-yl)- <i>N,N-</i> dimethylbenzenamine	-	98%, HPLC	776734-1G
$CF_3(CF_2)_4CF_2 \underbrace{S}_{S} \underbrace{S}_{S} \underbrace{S}_{S} \underbrace{CF_2(CF_2)_4CF_3}$	5,5 ^m -Bis(tridecafluorohexyl)-2,2 ⁺ :5',2 ^m -quaterthiophene	≤0.64 cm²/V·s	-	764639-250MG 764639-1G
F + F + F + F + F + F + F + F + F + F +	1,2,3,4,5,6,7,8-Octafluoro-9,10-bis[4-(trifluoromethyl)phenyl] anthracene		97%	757179-1G
$H_{3}C- \underbrace{ \begin{array}{c} CH_{3} \\ CH_{3} \end{array}}_{F} F \\ CH_{3} \\ F \\ CH_{3} \\ F \\ $	1,2,3,4,5,6,7,8-Octafluoro-9,10-bis[2-(2,4,6-trimethylphenyl) ethynyl]anthracene	-	97%	758442-250MG
CH ₃ (CH ₂) ₄ CH ₂ -N	2,7-Dihexylbenzo[<i>lmn</i>][3,8]phenanthroline-1,3,6,8(2 <i>H</i> ,7 <i>H</i>)- tetrone	λ_{abs} 380, 360, 342 nm in dichloromethane, 0.7 cm²/V·s	-	768464-500MG
	1,3,6,8(2 <i>H</i> ,7 <i>H</i>)-Tetraone, 2,7-dicyclohexylbenzo[<i>lmn</i>][3,8] phenanthroline	λ_{abs} 382, 362, 243 nm in chloroform, 6 cm²/V·s	98%	761443-1G
H ₃ C-N N-CH ₃	N, N'-Dimethyl-3,4,9,10-perylenedicarboximide	λ_{abs} 522 nm in dichloromethane, $10^{-5}cm^2/V\cdot s$	98%	771481-1G 771481-5G
	2,9-Dipropylanthra[2,1,9- <i>def6,5</i> ,10- <i>d'e'f</i>]diisoquinoline- 1,3,8,10(2 <i>H,9H</i>)tetrone	λ _{abs} 524, 488 nm, 0.1-2.1 cm²/V·s	97%	771635-1G
	N,N-Bis(3-pentyl)perylene-3,4,9,10-bis(dicarboximide)	λ_{abs} 524, 488, 457 nm in dichloromethane	99%, HPLC	776289-1G
	N,N-Dipentyl-3,4,9,10-perylenedicarboximide	λ_{max} 527 nm, ~10 ⁻⁴ cm ² /V·s	98%	663921-500MG
CH ₃ (CH ₂) ₄ CH ₂ -N O O O O O O O O O O O O O O O O O O O	2,9-Dihexylanthra[2,1,9- <i>def</i> :6,5,10- <i>d'e'f</i>]diisoquinoline- 1,3,8,10(2H,9H)tetrone	λ_{abs} 524, 448, 229 nm in dichloromethane, 0.1-2.1 cm²/V·s	98%	773816-1G

溶液プロセスにより作製される有機太陽電池用低分子ドナー材料の開発

Structure	Name	Optical Properties/Mobility	Purity/Dye Content	Prod. No.
CH ₃ (CH ₂) ₅ CH ₂ -N	2,9-Diheptylanthra[2,1,9- <i>def:</i> 6,5,10- <i>d'e'f</i>]diisoquinoline- 1,3,8,10(2 <i>H,</i> 9H)tetrone	λ_{max} 254 nm in dichloromethane, 1.4x10^-2 cm²/V·s	99%	773824-1G
C _B H ₁₇ ^N	N,N-Dioctyl-3,4,9,10-perylenedicarboximide	λ _{max} 526 nm, 1.7 cm²/V·s	98%	663913-1G
	N,N-Diphenyl-3,4,9,10-perylenedicarboximide	λ _{max} 527 nm, 10 ⁻⁵ cm²/Vs	98%	663905-500MG
$(H_3C)_3C$ $(H_3$	<i>N,N-Bis</i> (2,5-di- <i>tert</i> -butylphenyl)-3,4,9,10- perylenedicarboximide	λ _{max} 528 nm, 1.8x10 ⁻⁴ cm²/V·s	Dye content 97%	264229-100MG
H ₃ CO N N N N N N N N N N N O CH ₃	2,9-Bis[(4-methoxyphenyl)/methyl]anthra[2,1,9- <i>def:</i> 6,5,10- <i>d'e'f</i>]diisoquinoline-1,3,8,10(2 <i>H,9H</i>)tetrone	λ_{abs} 527, 490 nm in dichloromethane, 0.5 cm²/V·s	99%	771627-1G
	1,3,8,10(2 <i>H,9H)</i> -Tetraone, 2,9-bis(2-phenylethyl)anthra[2,1,9- <i>def</i> :6,5,10- <i>deff</i>]diisoquinoline	1.4 cm²/V·s	98%, elemental analysis	761451-1G
$ \begin{array}{c} F_{-} & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$	2,9-Bis[2-(4-fluorophenyl)ethyl]anthra[2,1,9-def.6,5,10- ď e'f]diisoquinoline-1,3,8,10(2 <i>H,9H</i>)tetrone	-	95%	763942-1G
	2,9-Bis[2-(4-chlorophenyl)ethyl]anthra[2,1,9- <i>def</i> :6,5,10- <i>d'ef</i>]diisoquinoline-1,3,8,10(2 <i>H,</i> 9 <i>H</i>)tetrone		98%	767468-1G

フラーレン誘導体

Name	Purity	Prod. No.
[6,6]-Phenyl C $_{\rm 71}$ butyric acid methyl ester, mixture of isomers	99%	684465-100MG 684465-500MG
[6,6]-Phenyl C_{61} butyric acid methyl ester	>99.9%	684457-100MG
[6,6]-Phenyl C $_{\rm 61}$ butyric acid methyl ester	>99.5%	684449-100MG 684449-500MG
[6,6]-Phenyl C $_{\rm e1}$ butyric acid methyl ester	>99%	684430-1G
[6,6]-Pentadeuterophenyl C_{e1} butyric acid methyl ester	99.5%	684503-100MG

aldrich.com/ms-jp

Structure	Name	Purity	Prod. No.
о-сн _а	[6.6] Diphenyl C _{s2} bis(butyric acid methyl ester) (mixture of isomers)	99.5%	704326-100MG
O C4H9	[6,6]-Phenyl-C ₆₁ butyric acid butyl ester	>97%	685321-100MG 685321-1G
O C _B H ₁₇	[6,6]-Phenyl-C ₆₁ butyric acid octyl ester	≥99%	684481-100MG
CH3	[6,6]-Thienyl C $_{\rm 61}$ butyric acid methyl ester	≥99%	688215-100MG
N-CH ₃	<i>N</i> -Methylfulleropyrrolidine	99%, HPLC	668184-100MG
	Small gap fullerene-ethyl nipecotate	≥95%, fullerenes 50%	707473-250MG
	ICMA	97%, HPLC	753947-250MG
\bigcirc	ICBA	99%, HPLC	753955-250MG
	ICBA	99.9%	745839-250MG
OH) SGFI · 30H2O · 25Na	Polyhydroxy small gap fullerenes, hydrated	Polyhydroxy SGFs(TGA) ~ 85%	707481-100MG

ジケトピロロピロールおよびチエノチオフェンを用いた 高性能半導体ポリマー

Tony Wigglesworth, Yiliang Wu, Cuong Vong and Matthew Heuft Xerox Research Centre of Canada, Mississauga ON, L5K 2L1 Email: tony.wigglesworth@xrcc.xeroxlabs.com

はじめに

高性能共役系有機化合物およびポリマーの開発は、有機 EL (OLED: organic light emitting diode)¹、有機電界効果トランジスタ (OFET: organic field-effect transistor)²、センサ³、有機太陽電池 (OPV: organic photovoltaic)²などのオプトエレクトロニクスデバイスにおい て、多様な応用の可能性が期待されているために、産学の研究において 広く注目を集めています。無機材料と比較して、有機材料は軽量、可溶性、 フレキシブル基板との親和性といった特有の利点をもたらすため、低コ ストの印刷技術を用いた電子デバイスの作製に用いられます。

ジケトピロロピロール (DPP: diketopyrrolopyrrole) 系材料は、プリ ンテッドエレクトロニクス用の高性能ポリマーを開発するための最も 有望な基本骨格の1つとして知られています⁴。DPP ポリマーは、電 子不足の DPP 発色団によって誘起される強いドナー-アクセプタ相 互作用のため、優れた凝集特性を有しています。これにより、ポリマ ーを用いた溶液プロセスによる OFET で 5 ~ 10 cm²V¹s⁻¹ もの移動度 (p型) が得られました^{5,6}。この種の半導体ポリマーは汎用性があり、 [C60]PCBM (Aldrich 製品番号: 684457、684449、684430) およ び [C70]PCBM (Aldrich 製品番号: 684465) アクセプタを用いたバ ルクヘテロ接合太陽電池でも利用され、3 ~ 7% の光電変換効率 (PCE: photoconversion efficiency) が報告されています⁷。

これまで研究されてきた多くの DPP 系材料の中で、ジケトピロロピロール-チエノチオフェン(DPP-TT)共重合体は、近年開発された最も有望な p型有機半導体ポリマーの1つとして登場しました。本論文では、溶液プロセスによる OFET デバイスにおける DPP-TT 共重合体の応用について紹介します。

溶液プロセスによる 有機電界効果トランジスタ

DPP-TT 共重合体は、溶液プロセスを用いて OFET デバイスを作製する 際の一般的な有機溶媒であるクロロホルムやクロロベンゼン、ジクロロ ベンゼン、キシレンに溶解します。DPP-TT 共重合体 P1 (Aldrich 製品) 番号:791989)は、OFET および OPV の両デバイスにおいて優れた性 能を発揮するため、広く研究されています。例えば、この DPP 系ポリマ ーについて1~10 cm²V^{-l}s⁻¹の移動度がいくつかの論文で報告されてお り、その値はポリマー分子量やデバイス構造に依存します⁶⁸。Liらは、 ポリマー P1 を用いて溶液プロセスにより作製した有機薄膜トランジス タ(OTFT: organic thin film transistor)が、10 cm²V^{-I}s⁻¹もの移動度を 示すことを報告しています⁶。この優れた性能は高い分子量(Mw = 501 kDa)によるものです。しかし、この驚くべきデバイス性能にもかかわ らず、DPP 系ポリマーは、大規模な商業用途では使用を禁じられてい るハロゲン系有機溶媒に対して主に溶解性を示します。本論文では、1 cm²V⁻¹s⁻¹ に近い性能を有する DPP-TT トランジスタが、非ハロゲン系芳 香族溶媒から実験室環境下で作製できることを明らかにします。我々は、 平均分子量 Mw = 35 ~ 50 kDa のポリマー P1 がキシレン溶媒に対して 優れた可溶性を有することを見出し、溶液プロセスによる OFET におけ るデバイス性能を調べました。

デバイス作製

トップゲート・ボトムコンタクト型 OFET を、200 nm の自然酸化膜 を持つnドープしたシリコンウエハの上に作製しました。SiO2 誘電体 層は、プラズマ洗浄した基板を、オクチルトリクロロシラン(OTS: octyltrichlorosilane、Aldrich 製品番号:235725) またはオクタデシル トリクロロシラン (ODTS: octadecyltrichlorosilane、 Aldrich 製品番号: **104817**) 自己組織化単分子層(SAM: selfassembled monolayer) で 修飾することで作製しました(0.1 M トルエン溶液中に 60℃でそれぞれ 20分間、40分間浸漬)。表面修飾の後、トルエンおよびイソプロパノー ルを用いてウエハを完全に洗浄し、ポリマー P1 の 0.7 wt.% p- キシレン 溶液で基板を飽和させることにより、半導体層を作製しました。この溶 液を基板上にそのまま 2 分間おいた後、1,000 rpm で 60 秒間回転する ことにより、均一な 25 ~ 50 nm 厚のポリマー P1 膜が形成されます。 この膜を80℃、10分間真空乾燥し、真空中にて140℃でアニールしま した。チャネル長が 90 µm のデバイスは、シャドウマスクを介して 60 nm 金電極を真空蒸着して用意し、デバイス性能は Keithley SCS-4200 システムで測定しました。ポリマーの化学構造、デバイス構造および典 型的なトランジスタ特性を図1に示しました。

aldrich.com/ms-jp

図1 A) DPP-TT の化学構造。B) トップコンタクト・ボトムゲート型(TCBG) デバイス構造。C) 典型的な DPP-TT トランジスタの出力特性。D) TCBG(L = 90 μm、W = 1,000 μm) OTFT デバイスの典型的な伝達特性。

チャネル長が 90 μ m のデバイスでは、OTS 修飾した SiO₂ 誘電体層上 にスピンコートで作製したデバイスの p 型の平均飽和移動度は 0.60± 0.07 cm²V¹s⁻¹ でした。ODTS 修飾したシリコン基板上に作製されたデバ イスでは、平均飽和移動度は 0.96±0.08 cm²V¹s⁻¹ に向上し、最大 1.02 cm²V¹s⁻¹ の移動度を達成したデバイスもありました。

結論

ジケトピロロピロール - チエノチオフェン(DPP-TT)共重合体は、溶液 プロセスが可能であり、かつドナー-アクセプタの強い相互作用によっ てもたらされる顕著な凝集特性を有するため、プリンテッドエレクトロ ニクスへの応用に最も有望な半導体材料の1つです。この DPP-TT 共重 合体は、溶液プロセスによる OFET および OPV デバイスにおいて非常 に優れた性能を示します^{6.7c}。また最近では、非ハロゲン系溶媒による処 理が可能であることが明らかになり、デバイス性能はアモルファスシリ コントランジスタの最高性能(0.5~1.0 cm²V¹s⁻¹)に近づいています。 さらに、140℃のアニール温度で DPP-TT 共重合体から高性能デバイス が得られ、低コストのプラスチック基板を用いることも可能です。

References

- Gross, M., Müller, D.C., Nothofer, H.G., Scherf, U., Neher, D., Bräuchle, C., Meerholz, K. Nature 2000, 405, 661-665.
- (2) (a) Beaujuge, P.M. and Frechet, J.M. J. Am. Chem. Soc. 2011, 133, 20009-20029.
 (b) Mei, J., Diao, Y., Appleton, A.L., Fang, L., Bao, Z. J. Am. Chem. Soc. 2013, 135, 6724-6746.
- (a) Yang, J.S. and Swager, T.S. J. Am. Chem. Soc. 1998, 120, 11864-11873.
 (b) Magliulo, M., Mallardi, A., Mulla, M.Y., Cotrone, S., Pistillo, B.R., Favia, P., Vikholm-Lundin, I., Pallazzo, G., Torsi, L. Adv. Mater. 2013, 25, 2090-2094.
- Nielsen, C.B., Turbiez, M., McCulloch, I. *Adv. Mater.* 2013, *25*, 1859-1880.
 Chen, H., Guo, Y., Yu, G., Zhao, Y., Zhang, J., Gao, D., Liu, H., Liu, Y. *Adv. Mater.* 2012, *24*,
- 4618-4622.
 (6) Li, J., Zhao, Y., Tan, H.S., Guo, Y., Di, C.-A., Yu, G., Liu, Y., Lin, M., Lim, S.H., Zhou, Y., Su, H., Ong, B.S. Sci. Rep. 2, 754; DOI:10.1038/srep00754 (2012).
- (a) Billyeld, J.C., Verstrijden, R.A.M., Wienk, M.M., Janssen, R.A. J. Mater. Chem., 2011 21, 9224-9231.
- (b) Li, W., Roelofs, W.S.C., Wienk, M.M., Janssen, R.A. J. Am. Chem. Soc. 2012, 134, 13787-13795.
 (c) Li, W., Hendriks, K.H., Roelofs, W.S.C., Kim, Y., Wienk, M.M., Janssen, R.A. Adv. Mater. 2013, 25, 3182-3126.
- (8) (a) Li, Y., Singh, S.P., Sonar, P. Adv. Mater. 2010, 22, 4862-4866.
 (b) Zhang, X., Richter, L.J., Delongchamp, D.M., Kline, R.J., Hammond, M.R., McCulloch, I., Heeney, M., Ashraf, R.S., Smith, J.N., Anthopoulos, T.D., Schroeder, B., Geerts, Y.H., Fisher, D.A., Toney, M.F. J. Am. Chem. Soc. 2011, 133, 15073-15084.

p型半導体ポリマー

最新製品情報は aldrich.com/ppoly をご覧ください。

Structure	Name	Molecular Weight	Optical Properties/Mobility	Prod. No.
$(H_3(CH_2)_6CH_3)$	PDPP2T-TT-OD	M _w 40000-60000	λ _{max} 820 nm 0.8 cm²/V·s	791989-100G
$H_{3}C \rightarrow CH_{3}$	PTB7	average M _w 80,000-200,000	λ _{max} 680 nm	772410-100MG
$\begin{array}{c} \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	PBDTTT-CF		7×10-4 cm²/V·s	772402-100MG

ジケトピロロピロールおよびチエノチオフェンを用いた高性能半導体ポリマー

n型半導体ポリマー

最新製品情報は aldrich.com/npoly をご覧ください。

透明導電性CNTインク

Printable • Environmentally Stable • Stretchable

CoMoCAT®カーボンナノチューブを含む導電性インクには、 コーティングの種類に合わせた3つのタイプがあります。 耐久性と環境安定性の必要な用途で、優れた透明導電性を示す コーティングが可能です。

V2V[™]: Print. Dry. Done.

導電性CNTインク(VC101)はスクリーン印刷に最適化されています

- 低温(約100℃)で乾燥します
- 界面活性剤や電気的に活性な分散剤やバインダーを含んでいません
- 一般的なスクリーン印刷用基板へ高い接着性を示します

A) 熱成形したCNTタッチセンサー試作品 B) 容量性CNTタッチスクリーン C) ロッドコーティングによるCNTネットワークのTEM画像 (~10 mg/mm²) D) CNT透明導電性薄膜(可視光透過率:95%)

SWeNT[®] Conductive Inks

			Sheet Resistance ²			Aldrich
	Description	Purpose	85% VLT	90% VLT	92% VLT	Prod. No.
AC100	SWCNT in aqueous surfactant solution	Spray Coating	137 Ω/sq.	237 Ω/sq.	330 Ω/sq.	791490
AC200	SWCNT in aqueous surfactant solution	Meyer-Rod/Slot-Die Coating	166 Ω/sq.	251 Ω/sq.	317 Ω/sq.	791504
VC101	SWCNT in proprietary solvent system (V2V)	Screen Printing	783 Ω/sq.	1,466 Ω/sq.	2,206 Ω/sq.	792462

1. V2V inks (e.g., VC101) contain electrically inert sulfonated tetrafluoroethylene (Nafion).

2. SR measurements for AC100, 200 taken with top coat.

CoMoCATカーボンナノチューブについては aldrich.com/swent-jp をご覧ください。

Aldrich Materials Science Web Portal

- 新製品情報、最新テクノロジーの解説
- ニュースレター「Material Matters™」、「材料科学の 基礎」のダウンロード
- 製品検索(構造式、化学名、CAS 番号など)
- Web製品カタログ
- ニュースレター、E-mailニュース定期配信の申し込み

Energy

リチウムイオン電池・燃料電池用材料、水素貯蔵材料、金属有機構造体(MOF) 蛍光材料、熱電材料、ナノ材料

Electronics

ナノワイヤ、プリンテッドエレクトロニクス用インク、OPV・OFET・OLED用材料 ナノ粒子分散液、カーボンナノチューブ、グラフェン、PVD・CVD用前駆体材料

Biomedical

薬物送達、組織工学用材料、PEG、生分解性ポリマー、機能性ナノ材料、ブロック共重 合体、デンドリマー、ナノクレイ

www.aldrich.com/ms-jp

©2014 Sigma-Aldrich Co. LLC. All rights reserved. SIGMA, SAFC, SIGMA-ALDRICH, ALDRICH, SUPELCO, and SAFC Hitech are trademarks of Sigma-Aldrich Co. LLC, registered in the US and other countries. FLUKA is a trademark of Sigma-Aldrich GmbH, registered in the US and other countries. Material Matters is a trademark of Sigma-Aldrich Co. LLC. Dyesol is a registered trademark of Dyesol Ltd. iPad is a registered trademark of Apple Inc. V2V is a trademark of Chasm Technologies, Inc., patents pending. IsoNanotubes-M, IsoNanotubes-S, PureTubes, and SuperPureTubes are trademarks of NanoIntegris, Inc. Orgacon is a trademark of Agfa-Gevaert N.V. Plexcore is a registered trademark Plextronics, Inc. Ricke is a registered trademark Ricke Metals, Inc. SWeNT and CoMoCAT are registered trademarks of SouthWest NanoTechnologies, Inc. Xerox is a registered trademark Xerox Corporation. Sigma brand products are sold through Sigma-Aldrich, Inc. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see product information on the Sigma-Aldrich website at www.sigmaaldrich.com

本記載の製品および情報は2014年8月1日現在の情報であり、収載の品目、製品情報、価格等は予告なく変更される場合がございます。/最新の情報は、弊社Webサイト (sigma-aldrich.com/japan)をご覧ください。/掲載価格は希望納入価格(税別)です。詳細は販売代理店様へご確認ください。/弊社の試薬は試験研究用のみを目的として 販売しております。医薬品原料並びに工業用原料等としてご購入の際は、こちらのWeb サイト(sigma.com/safc-jp)をご覧ください。

シグマ アルドリッチ ジャパン

〒140-0002 東京都品川区東品川2-2-24 天王洲セントラルタワー4F
 製品に関するお問い合わせは、弊社テクニカルサポートへ
 TEL:03-5796-7330 FAX:03-5796-7335
 E-mail: sialjpts@sial.com
 在庫照会・ご注文方法に関するお問い合わせは、弊社カスタマーサービスへ

TEL:03-5796-7320 FAX:03-5796-7325 E-mail:sialjpcs@sial.com http://www.sigma-aldrich.com/japan お問い合わせは下記代理店へ

SAJ1766 2014.8

