

ナノパターニングおよびリソグラフィ技術 Methods for Nanopatterning and Lithography

<image>

Patterning Tomorrow's Electronics

リソグラフィ/ナノパターニング用 メタクリル酸モノマー

プリンテッドエレクトロニクス用 インクジェット印刷

最新マイクロおよびナノ製造 プロセス用導電性ポリマー

自己組織化単分子層のフォト パターニング

SIGMA-ALDRICH®

はじめに

「ナノパターニングおよびリソグラフィ技術」と題した、2011年最 初の*Material Matters*™をお届けします。本号では、電子デバイス の作製には欠かせない、ナノスケールで微細形状をパターニング する際に用いられるさまざまな技術を特集します。サブミクロン スケールの製造には多様な技術が用いられており、エレクトロニ クス分野で開発された高度なトップダウン方式のリソグラフィ や、近年発展の著しい、自己組織化によるボトムアップアプローチ を取り入れた方法などがあります。ナノパターニングでは、この両 方のタイプのアプローチについての研究開発が行われています。

今日の電子デバイスの大半は、高度な最先端の装置と各用途に応

Kaushik Patel, Ph.D. Materials Science Sigma-Aldrich Corporation

じて調製された材料を用いた、トップダウン方式のフォトリソグ ラフィ技術で製造されています。例えば、代表的な集積回路は、シリコン、ガリウムヒ素、 ゲルマニウムなどの基板上にパターン化した金属、誘電体、および半導体の薄膜を複雑に 堆積させることで作られています。このようなデバイスには、一般に、レジストと呼ばれ る感光性ポリマー材料を用いて必要な回路パターンを基板上に形成する、「リソグラフィ 技術」が用いられています。一方で、フォトリソグラフィ以外の方法、つまり、技術的によ り簡便で費用効率の高いナノ製造技術の探索が続けられています。これらの方法には、ナ ノインプリントリソグラフィ(マイクロコンタクトプリント、モールドアシストリソグラ フィ、ホットエンボス加工リソグラフィなど)や近接場光学リソグラフィ、走査プローブ 顕微鏡やインクジェット印刷システムを用いたナノスケールでの直接パターニング、自己 組織化単分子層の利用などがあります。

これらのアプローチの中には、ナノデバイス研究のために個々のナノ構造を作製するのに 適していても、商業生産にはスループットが非現実的なほど低いものがあります。しかし ながら、ナノインプリントリソグラフィなどをはじめとする技術は、並列処理が可能でそ れほど複雑な装置を用いることなくナノスケールの複製が可能であることから、データス トレージなどの用途に高いスループットが期待できます。

本号の最初の論文は、IBM Almaden Research Center(カリフォルニア州、サンノゼ)のグ ループによるもので、フッ化メタクリラートポリマーの193 nm リソグラフィ用フォトレ ジストとしての利用に関する研究についてのレビューです。次に、ドイツのFraunhofer InstituteとChemnitz University of Technologyのグループによって、リジッドおよびフ レキシブル基板上への電子構造の直接印刷製造における、多様なインクジェット印刷技術 の利用について解説していただきます。続いて、Glasgow大学(英国)のFaiz Rahman教授 らによって、電子線リソグラフィなどの最先端高分解能パターニングに電荷拡散層として 導電性ポリマーを利用した例を解説していただきます。最後にご紹介するのは、Sheffield 大学(英国)のGraham Leggett 教授による、アルキルホスホン酸単分子層を用いたボトム アップとトップダウンを組み合わせた光化学的アプローチについての論文です。この論文 では、(i)マスクしてからUV光で露光する方法、または(ii)走査近接場光学顕微鏡とUV レーザーを組み合わせる方法、のいずれかで単分子層の上にパターンを作製することで、 10 nm 未満の分解能が得られています。

なお、本文の翻訳にあたっては、九州大学 最先端有機光エレクトロニクス研究センターの 合志 憲一助教に監修していただきました。ご協力いただき誠にありがとうございました。 ここに深く感謝いたします。

表紙について

▲ ALDRICH[™] Meterlets Science i g m a - a l d r i c h . c o m / j a p はじめに 2 表紙について _____ 2 "Your Materials Matter."____ 3 リソグラフィ /ナノパターニ ング用ヘキサフルオロアル コール官能基化メタクリル酸 モノマー 4 インクジェット印刷 - プリ ンテッドエレクトロニクスの 実現を可能にする主要技術 __ 14 最新マイクロおよびナノ製造 プロセス用導電性ポリマー ___ 20 自己組織化単分子層のマイク ロおよびナノスケールフォト パターニング _____ 24

Material Matters

目 次

ナノパターニングおよび

リソグラフィ技術

Volume 6, Number 1

容量と価格は sigma-aldrich.com/japan をご覧下さい

現在、半導体を基盤とした電子デバイスの製造は、ほとんどの場合、大規模な商業施設で 高度に自動化されたフォトリソグラフィ技術を用いて行われており、45 nmを超えるプ ロセスルールも珍しくありません。フィルターやフォトマスクを用いて集積回路を製造す るこのトップダウン方式が標準的な方法と考えられますが、今では、微細形状を10 nmよ りさらに小さくできるボトムアップ自己組織化方式が取り入れられつつあります。表紙の 図は、UV光とマスクを用いて単結晶シリコンなどの電子基板上に微細形状を転写する、 リソグラフィの基本的なコンセプトを描いたものです。

本カタログに掲載の製品及び情報は2011 年6月現在の内容であり、収載の品目、製 品情報等は予告なく変更される場合がご ざいます。予めご了承ください。製品のご 注文に際し、価格、在庫の確認は裏表紙に 記載の弊社カスタマーサービスまでお問 合せください。なお、日本Webサイト (sigma-aldrich.com/japan)の製品検索 でも日本円と在庫状況をご確認いただけ ます。

2

はじ

ð

"Your Material Matters"

Jeff Shurston Jeff Thurston, President Aldrich Chemical Co., Inc. 「こんな物質を探している」、「こんな製品があれば便利」といったお問い合わせやご要望はございませんか?アルドリッチでは、材料科学研究に有用な化合物の情報を募集しております。*sialjpts@sial.com*までお気軽にご連絡ください。

Wisconsin-Madison大学のPaul Nealey 教授から、 4-vinylbenzocyclobutene(VBCB、Aldrich製品番号733377)の 製品化のご提案をいただきました。この化合物は、特殊な方法を用 いずに固体表面を改質するための架橋性超薄膜の作製用に設計さ れたものです」。ビニル基によって種々のモノマーと容易に共重合 が可能で、その後250℃に加熱することでシクロブテン環が開裂し て二量化可能なジエンが生成します。これによって架橋化ポリ マー膜が形成され、表面が強固にコーティングされることで、一般 的な溶媒に対する耐性が得られるようになります。その上、このモ ノマーはマイクロエレクトロニクス用誘電体材料に適したポリ マーの合成にも有望です。VBCBと熱可塑性エラストマーとのポリ マーブレンドによって、わずかに熱安定性を失うだけで高いガラ ス転移温度(T_a)を保持した材料が得られます²。

4-Vinylbenzocyclobutene

733377-1G			
[99717-87-0]	$C_{10}H_{10}$	FW 130.19	
VBCB			

H₂C

References

- (1) Ryu, D. Y; Shin, K; Drockenmuller, E; Hawker, C. J.; Russell, T. P. Science **2005**, 308, 236-239.
- (2) So, Y.-H.; Hahn, S. F.; Li, Y.; Reinhard, M. T. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 2799-2806

本号で特集するナノパターニングおよびリソグラフィ関連材料

材料カテゴリー	内容	ページ
リソグラフィ・ナノパターニング用 HFA-MAモノマー	193 nm リソグラフィ用フッ素化メタクリラートモノマー	8
UVリングラフィ用モノマー	UVリソグラフィに用いられる環化、フッ素化モノマー化合物	8
光酸発生剤(PAG)	光酸発生剤	11
リソグラフィ用基板材料	電子材料研究に用いられる各種基板材料	12
プリンテッドエレクトロニクス用 インク材料	プリンテッドエレクトロニクス用銀インク、ペースト	18
プリンテッドエレクトロニクス用 基板材料	酸化インジウム、ITO、FTO透明導電性ガラス、プラスチック	19
導電性高分子	PEDOT含有ポリマー、ポリチオフェン、ポリピロール、 ポリアニリンなどの導電性高分子	22
自己組織化材料	自己組織化用ホスホン酸やチオール化合物、および金基板	27
ナノインプリント用高分子材料	ナノインプリントリソグラフィ用PMMA、PDMSポリマー	29

はじめに

バルク供給/スケールアップのご相談は… ファインケミカル事業部 Tel:03-5796-7340 Fax:03-5796-7345 E-mail:safcjp@sial.com

リソグラフィ / ナノパターニング用 ヘキサフルオロアルコール官能基化メタクリル酸モノマー

Daniel P. Sanders, Ratnam Sooriyakumaran, Richard A. DiPietro* IBM Almaden Research Center, San Jose, CA *Email: dipietro@almaden.ibm.com

はじめに

ムーアの法則(Moore's Law)を維持していくためには、マイクロ エレクトロニクスデバイスの集積密度を常に高めていく必要があ ります。現在の半導体デバイスに見られるような高密度回路を作 製するには、図1に示すようなリソグラフィ技術を用いた感光性 ポリマー薄膜へのパターニングを用います^{1,2}。

図1 ポジ型あるいはネガ型レジストを用いてパターンを形成するリソグラフィ技術¹

はじめに、シリコンウエハ上に感光性材料(フォトレジスト)の層 を所定の厚さになるようスピンコートで塗布します。この膜に、 マスクと光学系を通して適切な波長の紫外光を照射することで露 光します。フォトレジストには、一般に[solubility switch]ともい えるポリマーが含まれており、ポリマー薄膜の溶解性(例えば溶 解速度)を光化学的に変化させることが可能です35。また、現在の 化学増幅レジストには、高エネルギー照射によって分解して強酸 を生成する光酸発生剤(PAG: photoacid generator)が含まれて います。この酸は、フォトレジストポリマーに含まれる、酸に対し て不安定な保護基の開裂や、フォトレジストポリマー鎖間の架橋 結合の生成などの化学反応に対して触媒作用をもち、フォトレジ ストの溶解特性を変化させます 3-5。現像用溶媒を用いて、露光し た材料(ポジ型レジスト)、もしくは未露光の材料(ネガ型レジス ト)を選択的に除去(現像)することで、潜在パターンをフォトレ ジスト上に顕在化します。最終的に、反応性イオンエッチングな どによって、フォトレジストパターンが下地の基板に転写されま す。

リソグラフパターニング材料の 重要な特性

光学リソグラフィでは、次のレイリーの式に従い、最終的に得ら れる分解能は入射光の波長の関数で表されます。

$$R = \frac{k_1 \lambda}{NA}$$
(1)

ここでRは分解能(例えば最小限界寸法)、λは入射光の波長、NA はレンズ系の開口数です。また、k1はプロセスによって決まる係 数であり、一般に0.5から0.25の範囲の値をとります12。現在、よ り微細な寸法を得るために露光光の波長が短波長に移行してお り、新しい入射波長に対応できるフォトレジストを再設計する必 要があります1-5。特に、レジスト中の感光性を持たない成分は、入 射光を効率的に利用するために相対的に透明でなければなりませ ん。例えば4-ヒドロキシスチレンを含むフォトレジストポリマー (PHS:polyhydroxystyrene)やその共重合体は、優れた光学特性、 溶解性、およびエッチング特性を持つことから248 nm 照射に広 く使用されていますが、この芳香族ポリマーは193 nmに強い吸 収を持ちます。その後、193 nm で透過性を持つアクリラート、メ タクリラート、または環状オレフィンポリマーをベースとした新 しいフォトレジストが開発されました。化学増幅フォトレジスト 材料についての包括的な議論は他の文献35に譲りますが、新しい フォトレジスト材料を設計する上で考慮しなければいけない1つ の重要なパラメータは、フォトレジストの溶解特性です。前述し た248 nmイメージングに使用されるヒドロキシスチレンを含ん だ材料は、業界標準の現像液である0.26N水酸化テトラメチルア ンモニウム水溶液(TMAH)に対して、非露光部の膨潤や過度の薄 膜化を引き起こすことなく、極めて均一に溶解します。一方、カル ボン酸基を溶解性官能基に用いた前述の193 nm フォトレジスト ポリマーの基本骨格は、多くの場合非線形の溶解性を示し、現像 の初期段階で著しく膨潤します。そのため、これらの材料に基づ いたフォトレジストの開発は、特にネガ型の場合に極めて困難に なっています。

σ

Ε

0

sigma-aldrich.

HFA メタクリラートポリマーの 優れた特性

そこで、その代替策として、フェノール基の代わりに高フッ素化 アルコールを溶解性官能基として用いるフォトレジスト材料が開 発されています³⁶。特に六フッ化アルコール(HFA)(例えば 1,1,1,3,3,3-hexafluoro-2-propanol、**Aldrich 製品番号 325244**) の共役塩基は、電子吸引性の高い三フッ化メチル基によって誘導 的に安定化されており、前述したフェノール系材料のpKa(約11) と同程度の値を示します⁷。

HFA 官能基化ポリマーは248 nm、193 nm、および157 nm リソ グラフィ向けに設計されていますが、HFA 官能基化メタクリラー トモノマー(図2参照)を基盤としたリソグラフィ材料は、溶解性 が線形であり膨潤性が小さいことから、193 nmのドライおよび 液浸リソグラフィによく用いられています^{36,8-10}。

図2 193 nm リソグラフィ用に設計されたHFA 官能基化メタクリラートモノマー

この溶解特性は、カルボン酸のみをベースとしたリソグラフィ材料とは対照的です。例えば、図3は、メタクリル酸共重合体が(水晶振動子マイクロバランス(QCM:quartz crystal

microbalance)によって測定される膜厚の増加および抵抗のシフトからも明らかなように、)現像の初期段階で著しく膨潤することを示しています。一方、HFAベースのPoly(1)の溶解特性は線形です。

表1 HFAメタクリラートホモポリマーとそのUVリソグラフィに関連する特性

	Mn		Dissolution Rate in TMAH		Static water	Static advancing	Static, receding	
Polymera	[g/mol]	PDI	Τ _α	0.26N	0.52N	contact angle	contact angle ^b	contact angle ^b
Poly(1)	4220	1.56	89 °C	125 nm/s	1010 nm/s	83°	87°	66°
Poly(2)	6130	1.14	66 °C	990 nm/s	-	71°	77°	50°
Poly(3)	5920	1.56	55 °C	245 nm/s	-	75°	83°	58°
Poly(4)	9290	1.32	159 ℃	~0 nm/s	3.2 nm/s	77°	81°	65°
Poly(5)	11000	1.26	148 °C	~0 nm/s	~0 nm/s	86°	86°	74°

^aPrepared from Monomers 1-5 in Figure 2, respectively, using AIBN-initiated free radical polymerization.

^bMeasured using a tilting table contact angle goniometer.

F

代表的なHFA メタクリラート ホモポリマーの特性

ー連のホモポリマーは、図2に示したHFAメタクリラートをAIBN 開始フリーラジカル重合によって重合することで得られ、その特 性を表1に示します。低分子量ポリマーほど溶解速度が速いため、 低分子量(<10 kDa)のポリマーは、連鎖移動剤(CTA: chain transfer agent)として1-dodecanethiol(Aldrich製品番号 471364)を用いて合成されました。CTAを用いない場合は、高分 子量のポリマーを容易に得ることが可能です。HFAメタクリラー トポリマーの特性は、分子量の調整、連結基の構造の変更、または 他のコモノマーとの共重合によって調整することができます^{11,12}。 特に、4や5などの多環基を持つHFAメタクリラートは、多環基が 酸素反応性イオンエッチング抵抗を増加させる働きをするフォト レジストポリマーのコモノマーとして使用されます^{6,8-10}。一方、短 く分岐した連結基を持つモノマー1は、水との高い接触角と TMAH溶解速度がより重要とされる液浸リソグラフィに特に適し ています¹²⁻¹⁴。 IJ

5

バルク供給/スケールアップのご相談は… ファインケミカル事業部 Tel:03-5796-7340 Fax:03-5796-7345 E-mail:safcjp@sial.com

リソグラフィ /ナノパターニング材料へのHFAメタクリラートの適用

193 nm フォトレジスト材料

図4に、水晶振動子マイクロバランスで測定した248 nm フォト レジストと193 nm フォトレジストの254 nm Hg/Xe ランプの露 光時間に対する溶解特性を示しました。ヒドロキシスチレン基を 含んだ248 nm フォトレジストと比較して、中間の照射量で生成 する、部分的に脱保護された193 nm フォトレジストの場合、 TMAH現像液によって著しく膨潤します。イメージング性能とい う点では、このような膨潤は、回路パターンの側壁の荒れ(LER: line edge roughness)とパターン幅の荒れ(LWR: line width roughness)の増加およびプロセス許容度の減少につながります。 対照的に、モノマー4(図4、HFAレジスト)を含むフォトレジスト は、ポリヒドロキシスチレンをベースとした248 nm フォトレジ ストと同様の溶解特性を示します⁸⁹。

図4 溶解特性。**上**:248 nm フォトレジスト、中:193 nm フォトレジスト、 下: poly(*t*-butyl methacrylate-*co*-**4**)ベースのHFA含有193 nm フォトレ ジスト。

193 nm 水液浸リソグラフィ用 アルカリ溶解性トップコート

現在の半導体産業では157 nmリソグラフィを導入する代わり に、193 nmリソグラフィの能力を拡張した液浸リソグラフィを 引き続き使用しています¹⁵。液浸リソグラフィでは、空気より屈折 率が大きい浸漬液を、露光システムの最終レンズとフォトレジス トの間に置きます。浸漬液を使うことで、開口数が1より大きな イメージング系(いわゆる hyper-NAイメージング系)を現像で き、開口数にかかわらず使用可能な焦点深度が増え、その結果プ ロセス許容度が改善されます¹⁵。193 nmでは水が理想的な浸漬 液であり、その理由として、高い透明度を持つこと、低コストで高 純度のものをラボで容易に入手できること、および熱、粘性、表面 張力特性が優れていることが挙げられます。液浸リソグラフィで は入射光の有効波長(_/n)のみを変え、真空波長(_)は変えない ため、現行の193 nm世代の大部分の技術(レーザー光源、光学材 料、フォトレジスト、および反射防止材料)を継続して利用するこ とができます。

液浸リソグラフィの導入に伴い、浸漬液と直接接触可能なフォト レジスト材料の開発が必要です^{16,17}。**図5**に示すように、浸漬液は フォトレジストに対して好ましくない影響を及ぼし、光酸発生剤 などの重要な成分が溶出することで、イメージング性能を悪化さ せるとともに露光機を汚染する可能性をもっています¹⁶⁻¹⁸。この 問題を解決するために、保護用にポリマートップコートを用いて 浸漬液へのフォトレジスト成分の溶出量を減らし、その結果、浸 漬スキャナーを保護してフォトレジストパターニング性能を維持 することができます¹⁶。トップコート材料は、「film pulling」(浸 漬液のメニスカスの後方に膜や液滴の跡を残すこと)を起こすこ となくウエハを素早くスキャンできるように、水に対して高い後 退接触角を持つように設計されます¹⁹。これらの残留した水滴は リングラフ印刷による最終的な微細形状に欠陥を生じさせるた め、トップコートに対する浸漬液の後退接触角が、最大ウエハス キャン速度と装置のスループットを実質的に決定します^{16-17,19}。

図5 液浸リソグラフィにおける材料間の主要な相互作用を示した模式図。

HFAメタクリラートポリマーは、高い後退接触角と適度なTMAH 溶解速度(カルボン酸など、その他のアルカリ溶解性官能基を含 むポリマーと比較して)とを併せ持つため、トップコート用材料 に特に適しています^{12-14,16,20}。その上、HFAメタクリラートポリ マーはアルコール系キャスト溶媒に高い溶解性を持つため、最小 限の相互拡散でフォトレジスト上にスピンキャストできます。

a a

a b

sigma-aldrich.com/i

特に、ポリマー6(図6参照)は接触角と溶解速度性能のバランス が理想的であり、トップコート材料設計において基本となる物質 です^{12,16}。1,1,1,3,3,3-hexafluoroprop-2-yl methacrylateなどのフ ルオロアルキルメタクリラートと共重合させることで、溶解速度 を犠牲にする代わりに接触角が増加します(図6のポリマー7参 照)。一方で、トップコート-フォトレジスト間の相互作用を調整 するために強酸基を含むコモノマー(例えば、図6、ポリマー8の 2-acrylamido-2-methyl-1-propanesulfonic acid)を用いること で、水の接触角の問題はあるものの、パターンプロファイルを改 善(例えば、T-topを減らす)することが可能です¹⁴。

図6193 nm 液浸リソグラフィ用トップコートポリマーの例

193 nm水液浸リソグラフィ用 表面活性ポリマー添加剤

保護トップコートは水液浸リソグラフィにしばしば使用されます が、トップコートを用いるリソグラフィ技術は、従来のドライリ ソグラフィと比較して工程と材料費が増えます。代替策として、 ノントップコートフォトレジストが液浸リソグラフィ向けに開発 されています。この方法では、少量の表面活性フッ素ポリマー添 加剤が膜形成の間にフォトレジスト表面に分離して光酸発生剤の 溶出を最小化し、浸漬液-フォトレジスト間の相互作用をコント ロールします¹⁶。これらのノントップコートフォトレジストは、 トップコート材料を利用した液浸リソグラフィの高スループット と低欠陥特性を、余分な材料や工程コストを追加することなく実 現しようとするものです。

さまざまな表面活性フッ素ポリマー添加剤が、ノントップコート 液浸フォトレジスト用に開発されています1%。一般に、ほとんどの 添加剤は、現像液溶解型(トップコート型)と切替可能型(レジス ト型)のいずれかに分類できます。現像液溶解型添加剤に必要な 物性は、高い水接触角や水を溶媒とした現像液に対する適度な溶 解速度といった性質であり、液浸用トップコートとして有用な HFAメタクリラートの多くの物性と同じです。切替可能型添加剤 は、表面特性が最適化されたフッ素化フォトレジストそのもので す。多くのフッ素化表面活性樹脂はパターニング中に良好な水接 触角を示しますが、HFA メタクリラート材料はアルカリ現像液の 存在下でpHが変化することで疎水性から親水性へ特性が変わる ため、現像中に現像液の良好な濡れ性が確保されます12,16。例え ば、単純なフッ素化ポリマー添加剤9が入った未露光のノントッ プコートフォトレジストは、水および水性TMAH現像液にも高い 後退接触角を示しますが、HFAベースの添加剤ポリマー10を含 んだ同様のノントップコートフォトレジストは、MAH現像液に 対してはるかに小さい接触角を示します(図7参照)。

図7ポリマー添加剤(ポリマー9、10)入りノントップコートフォトレジストの水およびTMAH現像液に対する静的後退接触角

インパクト

HFA メタクリラートを含んだ最新のポジ型フォトレジストは、 IBMにおける193 nm ドライリソグラフィを用いて製造したいく つかの世代のチップ生産に、大きなインパクトをもたらしていま す。また、これらの化学は、半導体産業全体で用いられている液浸 用トップコートとノントップコートフォトレジストに導入され、 液浸リソグラフィ技術のチップ量産への急速な採用において重要 な役割を果たしています。HFA-MAモノマーの持つ材料固有の柔 軟性が、マイクロエレクトロニクスだけでなく半導体産業以外の 応用において、ポリマーの特性と性能の精密制御による大きな可 能性を研究者に与えています。

References

- (1) Wallraff, G. M.; Hinsberg, W. D. Chem. Rev. 1999, 99, 1801.
- (2) Mack, C. Fundamental Principles of Optical Lithography: The Science of Microfabrication. Wiley: West Sussex, England, 2008.
- (3) Ito, H. Adv. Polym. Sci. 2005, 172, 37.
- (4) MacDonald, S. A.; Willson, C. G.; Fréchet, J. M. J. Acc. Chem. Res. 1994, 27, 153.
- Reichmanis, E.; Houlihan, F. M.; Nalamasu, O.; Neenan, T. X. *Chem. Mater.* **1991**, *3*, 394.
 Ito, H.; Truong, H. D.; Allen, R. D.; Li, W.; Varanasi, P. R.; Chen, K.-J.; Khojasteh, M.; Huang, W.-S.; Burns, S. D.; Pfeiffer, D. *Polym. Adv. Technol.* **2006**, *17*, 104.
- (7) Gandler, J. R.; Jencks, W. P. J. Am. Chem. Soc. **1982**, 104, 1937.
- (8) Varanasi, P. R.; Kwong, R. W.; Khojastech, M.; Patel, K.; Chen, K-J.; Li, W.; Lawson, M. C.; Allen, R. D.; Sooriyakumaran, R.; Brock, P.; Sundberg, L. K.; Slezak, M.; Dabbagh, G.; Liu, Z.; Nishimura, Y.; Chiba, T.; Shimokawa, T. J. Photopolym. Sci. Technol. 2005, 18, 381.
- (9) Varanasi, P. R.; Kwong, R. W.; Khojastech, M.; Patel, K.; Chen, K-J.; Li, W.; Lawson, M. C.; Allen, R. D.; Sooriyakumaran, R.; Brock, P.; Sundberg, L. K.; Slezak, M.; Dabbagh, G.; Liu, Z.; Nishimura, Y.; Chiba, T.; Shimokawa, T. *Proc. SPIE* **2005**, *5753*, 131.
- (10) Patel, K.; Lawson, M.; Varanasi, P.; Medeiros, D.; Wallraff, G.; Brock, P.; DiPietro, R.; Nishimura, Y.; Chiba, T.; Slezak, M. Proc. SPIE **2004**, *5376*, 94.
- (11) Allen, R. D.; Breyta, G.; Brock, P.; DiPietro, R.; Sanders, D.; Sooriyakumaran, R.; Sundberg, L. K. J. Photopolym. Sci. Technol. 2006, 19, 569.
- (12) Sanders, D. P.; Sundberg, L. K.; Sooriyakumaran, R.; Brock, P. J.; DiPietro, R. A.; Truong, H. D.; Miller, D. C.; Lawson, M. C.; Allen, R. D. Proc. SPIE **2007**, 6519, 651904.
- (13) Allen, R. D.; Brock, P. J.; Sundberg, L.; Larson, C. E.; Wallraff, G. M.; Hinsberg, W. D.; Meute, J.; Shimokawa, T.; Chiba, T.; Slezak, M. J. Photopolym. Sci. Technol. 2005, 18, 615.
- (14) Khojasteh, M.; Popova, I.; Varanasi, P. R.; Sundberg, L.; Robinson, C.; Corliss, D.; Lawson, M.; Dabbagh, G.; Slezak, M.; Colburn, M.; Petrillo, K. Proc. SPIE 2007, 6519, 651907.
- (15) Lin, B. J. J. Microlith., Microfab., Microsyst. 2004, 3, 377.
- (16) Sanders, D. P. Chem. Rev. 2010, 110, 321.
- (17) Wei, Y.; Brainard, R. L. Advanced Processes for 193-nm Immersion Lithography SPIE Press, Bellingham, WA, 2009.
- Wallraff, G. M.; Larson, C. E.; Breyta, G.; Sundberg, L.; Miller, D.; Gil, D.; Petrillo, K.; Person, W. Proc. SPIE 2006, 6153, 61531M.
 Schuetter, S. D.; Shedd, T. A.; Nellis, G. F. J. Micro/Nanolith. MEMS MOEMS
- 2007, 6, 023003. (20) Sundberg, L. K.; Sanders, D. P.; Sooriyakumaran, R.; Brock, P. J.; Allen, R. D. *Proc. SPIE*
- (20) Sundberg, L. K.; Sanders, D. P.; Sooriyakumaran, R.; Brock, P. J.; Allen, R. D. Proc. SPIE 2007, 6519, 65191Q.

リソグラフィ・ナノパターニング用HFA-MAモノマー

Name	Structure	Purity	Prod. No.
1,1,1-Trifluoro-2-trifluoromethyl-2-hydroxy-4-methyl- 5-pentyl methacrylate	$H_3 H_3 C H_0 CF_3$ $H_2 C + CF_3 CF_3$	>97%	733695-1G 733695-5G
2-[(1',1',1'-Trifluoro-2'-trifluoromethyl-2'-hydroxy) propyl]-3-norbornyl methacrylate	HO CF_3 CF_3 CF_2 CH_2 CH_3	>97%	733660-1G 733660-5G
1,1,1-Trifluoro-2-trifluoromethyl-2-hydroxy-5-pentyl methacrylate	$H_2C \rightarrow CF_3$ $CH_3 \rightarrow HO CF_3$	*	737895-5G
1,1,1-Trifluoro-2-trifluoromethyl-2-hydroxy-4-pentyl methacrylate	$H_2C \xrightarrow[CH_3]{O} H_3C HO CF_3$ CH ₃	*	737909-5G

UVリソグラフィ用モノマー

Name	Structure	Purity	Prod. No.
3-Oxabicyclo[3.1.0]hexane-2,4-dione	0 000	98%	391174-1G
Bicyclo[2.2.1]hepta-2,5-diene, 2,5-Norbornadiene; NBD		98%	B33803-5ML B33803-100ML B33803-500ML
7- <i>tert</i> -Butoxy-2,5-norbornadiene	t-Bu-O	96%	446432-1G
exo-5-Norbornenecarboxylic acid, NC	C CH	97%	718149-1G 718149-5G
<i>cis</i> -5-Norbornene- <i>endo</i> -2,3-dicarboxylic acid, NDC	но о	98%	216704-5G 216704-25G
5-Norbornene-2- <i>endo</i> ,3- <i>exo</i> -dicarboxylic acid, NDC	носо	97%	460036-5G
5-Norbornene-2,2-dimethanol, NDM	OH	98%	152188-1G
5-Norbornene-2-endo,3- endo -dimethanol, NDM	ОН	98%	460044-5G
5-Norbornene-2-exo,3-exo-dimethanol, NDM	——————————————————————————————————————	97%	460052-5G
exo-2,3-Epoxynorbornane, ENB	↓ o	97%	117803-5G 117803-25G
cis-5-Norbornene-exo-2,3-dicarboxylic anhydride	A Leo	95%	548006-5G

リソグラフィ/ナノパターニング用ヘキサフルオロアルコール官能基化メタクリル酸モノマー

Name	Structure	Purity	Prod. No.
<i>cis</i> -5-Norbornene- <i>endo</i> -2,3-dicarboxylic anhydride	H CO	97%	247634-5G 247634-25G
N-Hydroxy-5-norbornene-2,3-dicarboxylic acid imide, HONB	H N OH	97%	226378-50G
1,4,5,6,7,7-Hexachloro-5-norbornene-2,3-dicarboxylic anhydride		97%	103268-1KG
Methyl-5-norbornene-2,3-dicarboxylic anhydride	CH _a _C	90%	235431-250G 235431-1KG
Isobornyl methacrylate, IBMA	$H_{3}C \xrightarrow{CH_{2}} O \xrightarrow{CH_{3}} O$	-	392111-100ML 392111-500ML 392111-1L
Isobornyl acrylate, IBA	H ₃ C CH ₃ CH ₃ CH ₃ CH ₂	-	392103-100ML 392103-500ML 392103-1L
Tetrahydrofurfuryl acrylate, TFMA	CH ₂	-	408271-100ML
[Tris(dimethylphenylphosphine)](2,5-norbornadiene) rhodium(I) hexafluorophosphate	$\begin{bmatrix} & CH_3 \\ P \\ P \\ -H_3 \\ -H_3 \\ 3 \end{bmatrix}_3 \overset{+}{}_{PF_6}$	97%	337501-100MG
1,3-Adamantanediacetic acid, H2ADA	но стран	97%	146226-1G 146226-5G
1,3-Adamantanedicarboxylic acid, ADC	о- он 	98%	340820-1G
Dimethyl 1,3-adamantanedicarboxylate, DMADC	O_OCH3 J_OCH3 OCH3	98%	340839-5G

UVリソグラフィ用フッ素化モノマー

Name	Structure	Purity	Prod. No.
2-(Trifluoromethyl)acrylic acid, TFMAA	H ₂ C CF ₃ OH	98%	369144-1G 369144-5G
2,2,2-Trifluoroethyl acrylate, TFEA	H ₂ C CF3	99%	297720-5G 297720-25G
1,1,1,3,3,3-Hexafluoroisopropyl acrylate, HFiPA	H_2C CF_3 CF_3	99%	367656-5G
1,1,1,3,3,3-Hexafluoroisopropyl methacrylate, HFiPMA	$\begin{array}{c} O \\ H_2C \\ H_3 \\ CH_3 \end{array} \begin{array}{c} CF_3 \\ CF_3 \\ CF_3 \end{array}$	99%	367664-5G
2,2,3,3,3-Pentafluoropropyl acrylate, PFPA	H ₂ C CF ₃	98%	470961-5ML 470961-25ML

Name	Structure	Purity	Prod. No.
2,2,3,4,4,4-Hexafluorobutyl acrylate, HFBA	H ₂ C F F F	95%	474452-25ML
2,2,3,4,4,4-Hexafluorobutyl methacrylate, HFBMA	$H_2C \underbrace{\downarrow}_{CH_3} O \underbrace{\downarrow}_{F} CF_3$	98%	371971-5G
2,2,3,3,4,4,4-Heptafluorobutyl acrylate, HFBA	$H_2C = O $ $F = F $ CF_3	97%	443751-5ML
2,2,3,3,4,4,4-Heptafluorobutyl methacrylate, HFBMA	H_2C H_3C F F CF_3	97%	444006-5G
2,2,3,3,4,4,5,5-Octafluoropentyl acrylate, OFPA	H ₂ C F F F F F	97%	474401-25ML
2,2,3,3,4,4,5,5-Octafluoropentyl methacrylate, OFPMA	H_2C H_2C H_3C F	98%	470988-25ML
2,2,3,3,4,4,5,5,6,6,7,7-Dodecafluoroheptyl acrylate, DFHA		95%	474428-5ML
3,3,4,4,5,5,6,6,7,7,8,8,8-Tridecafluorooctyl acrylate, TFOA	$H_2C \xrightarrow{O} CH_2CH_2(CF_2)_5CF_3$	97%	474347-5ML 474347-25ML
1H,1H,2H,2H-Perfluorodecyl acrylate	H ₂ C OCH ₂ CH ₂ CF ₂ CF ₃	97%	474487-5ML 474487-25ML
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-Heptadecafluorodecyl methacrylate, HDFDMA	$\begin{array}{c} H_2 C \bigvee \\ H_2 C H_3 \\ C H_3 \end{array} , C H_2 C H_2 (CF_2)_7 CF_3 \\ C H_3 \end{array}$	97%	474223-25ML
3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,11,11,12,12,12-Heneicosa- fluorododecyl acrylate	H ₂ C, CF ₂ (CF ₂) ₈ CF ₃	96%	474355-5G
Zonyl® TM fluoromonomer	H_2C H_3 H_2C H_3 H_2C H_3 H_2C H_3 H_2C H_3	-	421480-50ML
Epifluorohydrin	₩ O F	98%	E1101-1G
Glycidyl 2,2,3,3-tetrafluoropropyl ether		97%	474150-25ML
Glycidyl 2,2,3,3,4,4,5,5-octafluoropentyl ether		96%	474169-5ML
(2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-Heptadecafluorononyl) oxirane	CF ₃ (CF ₂) ₇ CH ₂	96%	474088-25ML
[2,2,3,3,4,4,5,5,6,6,7,7,8,9,9,9-Hexadecafluoro-8-(trifluoro- methyl)nonyl]oxirane	$\begin{array}{c} F_3C \ \ \ CF_2(CF_2)_5CH_2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	96%	474134-25ML
<i>N</i> -Hydroxy-5-norbornene-2,3-dicarboximide perfluoro-1-butanesulfonate		≥99% trace metals basis	531111-1G 531111-5G

光酸発生剤(PAG)

Name	Structure	$\lambda_{abs}/\lambda_{max}$	Prod. No.
Triphenylsulfonium triflate, TPST	F ₃ C-SO ⁻ O	233 nm	526940-1G 526940-5G
Triphenylsulfonium perfluoro-1-butanesufonate	$ \begin{array}{c} & & \\ & & $	-	531057-1G 531057-5G
(4-Methoxyphenyl)diphenylsulfonium triflate	$H_{3}CO-\swarrow F_{3}C- \overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}{\overset{O}$	260 nm	526967-5G
(4-Phenoxyphenyl)diphenylsulfonium triflate		256 nm	526975-1G-A
(4-Phenylthiophenyl)diphenylsulfonium triflate	S-C-S-O- B-C-S-O- B-C-S-O- B-C-S-O- B-C-S-O-	298 nm	527009-1G 527009-5G
Tris(4- <i>tert-</i> butylphenyl)sulfonium triflate	$\begin{array}{c} H_3C - CH_3 \\ CH_3 \\ H_3C - CH_3 \\ CH$	201 nm	531030-1G
Tris(4- <i>tert</i> -butylphenyl)sulfonium perfluoro-1-butane- sulfonate	$\begin{array}{c} CH_3\\ H_3C\overset{C}{\longleftarrow}H_3\\ H_3C\overset{F}{\longleftarrow}F_{S}\overset{F}{\leftarrow}F_{S}\overset{F}{\bullet}O^{T}\\ H_3C\overset{F}{\longleftarrow}CH_3\\ H_3C\overset{F}{\longleftarrow}CH_3\\ H_3C\overset{F}{\longleftarrow}CH_3\end{array}$	-	531073-1G 531073-5G
Triarylsulfonium hexafluorophosphate salts, mixed	PF6 S* PF6 PF6 S* PF6 PF6 S* PF6	-	407216-25ML 407216-100ML
Diphenyliodonium hexafluorophosphate, DPIHFP	PF6"	-	548014-5G 548014-25G
Diphenyliodonium nitrate, DPIN	NO3	203 nm 226 nm	127396-25G
Diphenyliodonium triflate, DPIT	$ ()^{i})^{i})^{F_3C-S-O^-} $	-	530972-1G
Diphenyliodonium <i>p</i> -toluenesulfonate, DPIpTS		222 nm	530980-1G

Sigle-tert-butylphenylliodonium perfluoro-1-butane- ulfonate Image: Sigle-tert-butylphenylliodonium p-toluenesulfonate Image: Sigle-tert-butyl	Bis(4- <i>tert</i> -butylphenyl)iodonium tr	iflate, DtBPIT		H ₃ C O H ₃ C O CH ₃ F ₃ C S O	CH ₃ -CH ₃ -CH ₃
ask4-tert-butylphenylliodonium p-toluenesulfonate $\mu_{sb} \in \mathcal{F}_{sb} \oplus \mathcal{F}_{sb} \oplus \mathcal{F}_{sb}$ t/e4-Methoxystynyl-4,6-bis(trichloromethyll-1,3.5- $\mu_{sb} \oplus \mathcal{F}_{sb} \oplus \mathcal{F}_$	Bis(4- <i>tert</i> -butylphenyl)iodonium p sulfonate	erfluoro-1-butane-			CH ₃ -CH ₃ = 0 CH ₃ = 0 CH ₃ = -S-O ⁻ O
2-(4-Methoxystyryl)-4.6-bis(trichloromethyl)-1,3.5- riazine c_{bc} c	Bis(4- <i>tert</i> -butylphenyl)iodonium <i>p</i> -	toluenesulfonate			CH ₃ CH ₃ O ⁻ CH ₃
VHydroxynaphthalimide triflate, HNT; NHN-TF デデデ Cors Jングうラフィ用基板材料 Vame Orientation Type Dopant Dimens illicon, wafer single side polished) (100) N undoped diam.x (100) N phosphorus diam.x (100) N phosphorus diam.x (100) N phosphorus diam.x (100) N phosphorus diam.x (100) P boron diam.x (100) P boron diam.x (111) N undoped diam.x (111) P boron diam.x (111) P boron diam.x (111) P boron diam.x (111) P boron	2-(4-Methoxystyryl)-4,6-bis(trichlor triazine	romethyl)-1,3,5-			Осна
Vame Orientation Semiconductor illicon, wafer (100) N undoped diam.x single side polished) (100) - undoped diam.x (100) N phosphorus diam.x (100) N phosphorus diam.x (100) N phosphorus diam.x (100) N phosphorus diam.x (100) P boron diam.x (100) P boron diam.x (110) P boron diam.x (111) N undoped diam.x (111) P boron diam.x (111) P boron diam.x (111) P boron diam.x (111) P boron diam.x (111)	<i>N</i> -Hydroxynaphthalimide triflate, I	HNT; NHN-TF			DCF3
vame Orientation Type Dopant Dimension jilicon, wafer single side polished) (100) N undoped diam.x (100) - undoped diam.x (100) N phosphorus diam.x (100) N phosphorus diam.x (100) N phosphorus diam.x (100) N phosphorus diam.x (100) P boron diam.x (100) P boron diam.x (100) P boron diam.x (100) P boron diam.x (111) N undoped diam.x (111) N undoped diam.x (111) N undoped diam.x (111) P boron diam.x (111) P boron diam.x ilicon dioxide, crystalline (0001) - undoped L x W x ingle crystal subst	リングラフィ目	日其板材料			
single side polished) (100) - undoped diam. × (100) N phosphorus diam. × (100) N phosphorus diam. × (100) P boron diam. × (100) P boron diam. × (100) P boron diam. × (100) P boron diam. × (111) N undoped diam. × (111) N undoped diam. × (111) P boron diam. × (110) - undoped L × W > (110) - undoped L × W > (111) - undoped L × W > (111) P undoped P undoped P undo	リソグラフィ月 	用基板材料	Semiconductor	D	
(100) - undoped diam. × (100) N phosphorus diam. × (100) N phosphorus diam. × (100) P boron diam. × (111) N undoped diam. × (111) P boron diam. × (100) - undoped L × W > (111) - undoped L × W > (111) - undoped L × W > (111) - undoped <td>リソグラフィ月 <mark>Name</mark> Silicon.wafer</td> <td>月基板材料</td> <td>Semiconductor Type N</td> <td>Dopant undoped</td> <td>Dimensio diam. x ti</td>	リソグラフィ月 <mark>Name</mark> Silicon.wafer	月基板材料	Semiconductor Type N	Dopant undoped	Dimensio diam. x ti
(100) N phosphorus diam. × (100) N phosphorus diam. × (100) P boron diam. × (100) P boron diam. × (100) P boron diam. × (110) P boron diam. × (111) N undoped diam. × (111) N undoped diam. × (111) N phosphorus diam. × (111) P boron diam. × (110) - undoped L × W × (110) - undoped L × W × (111) - undoped L × W × (111) - undoped L × W × <td>リソグラフィ月 Name Silicon, wafer (single side polished)</td> <td>月基板材料 Orientation</td> <td>Semiconductor Type N</td> <td>Dopant undoped</td> <td>Dimensio diam. × tl</td>	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 Orientation	Semiconductor Type N	Dopant undoped	Dimensio diam. × tl
(100) N phosphorus diam. x (100) P boron diam. x (111) N undoped diam. x (111) N undoped diam. x (111) N undoped diam. x (111) P boron diam. x (110) - undoped L x W x (111) - undoped L x W x (111) - undoped L x W x iallium antimonide, single crystal substrate) - undoped L x W x	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 Orientation (100) (100)	Semiconductor Type N	Dopant undoped undoped	Dimensio diam. × tł diam. × tł
(100) P boron diam.x (100) P boron diam.x (100) P boron diam.x (111) N undoped diam.x (111) N undoped diam.x (111) N undoped diam.x (111) P boron diam.x (100) - undoped L × W > (110) - undoped L × W > (111) - undoped L × W > iallium antimonide, single crystal substrate) (100) - undoped L × W >	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 Orientation (100) (100) (100)	Semiconductor Type N - N	Dopant undoped undoped phosphorus	Dimensio diam. × th diam. × th diam. × th
(100) P boron diam.x (111) N undoped diam.x (111) N undoped diam.x (111) N undoped diam.x (111) N phosphorus diam.x (111) P boron diam.x (111) P boron diam.x (111) P boron diam.x (111) P boron diam.x illicon dioxide, crystalline (0001) - undoped L × W > ingle crystal substrate) (100) - undoped L × W > iallium antimonide, (100) - undoped L × W > iallium antimonide, (100) - undoped L × W >	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 (100) (100) (100) (100)	Semiconductor Type N - N N	Dopant undoped undoped phosphorus phosphorus	Dimension diam. × th diam. × th diam. × th diam. × th
(111) N undoped diam.x (111) N undoped diam.x (111) N undoped diam.x (111) N phosphorus diam.x (111) P boron diam.x (100) - undoped L x W x (110) - undoped L x W x (111) - undoped L x W x (110) - undoped L x W x (111) - undoped L x W x (100) - undoped diam.x	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 Orientation (100) (100) (100) (100) (100)	Semiconductor Type N - N N P	Dopant undoped undoped phosphorus phosphorus boron	Dimensio diam. × tł diam. × tł diam. × tł diam. × tł diam. × tł
(111) N undoped diam. × (111) N phosphorus diam. × (111) P boron diam. × Alagnesium oxide, (100) - undoped L × W > (110) - undoped L × W > (111) - undoped L × W > iallium antimonide, (100) - undoped L × W > (110) - undoped L × W > iallium antimonide, (100) - undoped L × W > (100) - undoped L × W >	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 (100) (100) (100) (100) (100) (100)	Semiconductor Type N - N N P P	Dopant undoped undoped undoped phosphorus phosphorus boron	Dimensio diam. × tr diam. × tr diam. × tr diam. × tr diam. × tr diam. × tr
(111) N phosphorus diam. × (111) P boron diam. × (100) - undoped L × W × (110) - undoped L × W × (111) - undoped L × W × iallium antimonide, (100) - undoped sallium antimonide, (100) - undoped	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 Orientation (100) (100) (100) (100) (100) (100) (111)	Semiconductor Type N - N N P P P N	Dopant undoped undoped phosphorus phosphorus boron boron undoped	Dimensio diam. × tł diam. × tł diam. × tł diam. × tł diam. × tł diam. × tł diam. × tł
(111) P boron diam. × // dagnesium oxide, (100) - undoped L × W > (110) - undoped L × W > (110) - undoped L × W > (111) - undoped L × W > iallium antimonide, (100) - undoped isingle crystal substrate) - undoped diam. ×	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 Orientation (100) (100) (100) (100) (100) (111) (111)	Semiconductor Type N - N N P P N N	Dopant undoped undoped phosphorus phosphorus boron boron undoped undoped	Dimensio diam. × tł diam. × tł
Image: registration of the second	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 Orientation (100) (100) (100) (100) (100) (111) (111)	Semiconductor Type N - N P P P N N N N	Dopant undoped undoped phosphorus phosphorus boron boron undoped undoped	Dimensio diam. × tł diam. × tł
Item r Doront Darient Jilicon dioxide, crystalline (0001) - undoped L × W > Aagnesium oxide, single crystal substrate) (100) - undoped L × W > (110) - undoped L × W > (111) - undoped L × W > Sallium antimonide, single crystal substrate) (100) - undoped L × W >	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 Orientation (100) (100) (100) (100) (100) (111) (111) (111) (111)	Semiconductor Type N - N P P P N N N N	Dopant undoped undoped phosphorus phosphorus boron boron undoped undoped	Dimensio diam. × tr diam. × tr
Adagnesium oxide, cystali substrate) (100) - undoped L × W > (100) - undoped L × W > (110) - undoped L × W > (111) - undoped L × W > Sallium antimonide, (100) - undoped diam. × single crystal substrate)	リソグラフィ月 Name Silicon, wafer (single side polished)	月基板材料 Orientation (100) (100) (100) (100) (100) (111) (111) (111) (111) (111)	Semiconductor Type N - N P P P N N N N N P	Dopant undoped undoped phosphorus phosphorus boron undoped undoped phosphorus boron	Dimensio diam. × tł diam. × tł
single crystal substrate) (110) - undoped L × W > (111) - undoped L × W > Sallium antimonide, single crystal substrate) (100) - undoped	リングラフィ月 Name Silicon, wafer (single side polished) Silicon dioxide, crystalline	月基板材料 Orientation (100) (100) (100) (100) (100) (100) (111) (111) (111) (111) (111)	Semiconductor Type N N N P P P N N N N N P P N N P P N N N N N	Dopant undoped undoped phosphorus phosphorus boron undoped undoped phosphorus boron boron	Dimensio diam. × tł diam. × tł
(111) - undoped L × W > Sallium antimonide, (100) - undoped diam. × single crystal substrate) - - - -	リソグラフィ月 Silicon, wafer (single side polished)	月基板材料 Orientation (100) (100) (100) (100) (100) (111) (111) (111) (111) (111) (111) (100)	Semiconductor Type N N N P P P N N N N N N P P N N N N N	Dopant undoped undoped phosphorus phosphorus boron undoped undoped phosphorus boron boron undoped undoped undoped undoped	Dimensio diam. × tł diam. × tł t_ × W × tł
Sallium antimonide, (100) - undoped diam. × single crystal substrate)	リソグラフィ月 Silicon, wafer (single side polished) Silicon dioxide, crystalline Magnesium oxide, (single crystal substrate)	月基板材料 Orientation (100) (100) (100) (100) (100) (100) (111) (111) (111) (111) (111) (111) (111) (100) (111) (100) (111) (111) (111) (111) (111) (111) (111) (111) (111) (111) (100) (111) (111) (100) (111) (111) (111) (111) (111) (111) (110) (Semiconductor Type N N N P P P N N N N N N P P P N N N N	Dopant undoped undoped phosphorus phosphorus boron undoped phosphorus boron boron undoped undoped undoped undoped undoped	Dimensio diam. × tr diam. × tr L × W × t L × W × t
	リソグラフィ月 Silicon, wafer (single side polished) Silicon dioxide, crystalline Magnesium oxide, (single crystal substrate)	日基板材料 Orientation (100) (100) (100) (100) (100) (100) (111) (111) (111) (111) (111) (111) (110) (110) (110) (110)	Semiconductor Type N N N P P P N N N N N N N P P - - - - -	Dopant undoped undoped phosphorus phosphorus boron undoped undoped boron boron undoped undoped undoped undoped undoped	Dimensio diam. × tr diam. × tr L × W × tr L × W × tr

リソグラフィ用基板材料

Name	Orientation	Semiconductor Type	Dopant	Dimensions	Prod. No.
Silicon, wafer (single side polished)	(100)	N	undoped	diam. × thickness 2 in. × 0.5 mm	646687-1EA 646687-5EA
	(100)	-	undoped	diam. \times thickness 3 in. \times 0.5 mm	647535-1EA 647535-5EA
	(100)	Ν	phosphorus	diam. \times thickness 2 in. \times 0.5 mm	647780-1EA 647780-5EA
	(100)	Ν	phosphorus	diam. \times thickness 3 in. \times 0.5 mm	647802-1EA
	(100)	Р	boron	diam. \times thickness 2 in. \times 0.5 mm	647675-5EA 647675-1EA
	(100)	Р	boron	diam. \times thickness 3 in. \times 0.5 mm	647764-1EA
	(111)	Ν	undoped	diam. \times thickness 2 in. \times 0.5 mm	647101-1EA 647101-5EA
	(111)	Ν	undoped	diam. \times thickness 3 in. \times 0.5 mm	647543-1EA 647543-5EA
	(111)	Ν	phosphorus	diam. \times thickness 2 in. \times 0.5 mm	647799-1EA
	(111)	Р	boron	diam. \times thickness 2 in. \times 0.5 mm	647705-1EA
	(111)	Р	boron	diam. \times thickness 3 in. \times 0.5 mm	647772-5EA
Silicon dioxide, crystalline	(0001)	-	undoped	L \times W \times thickness 10 mm \times 10 mm \times 0.5 mm	634867-5EA
Magnesium oxide,	(100)	-	undoped	$L \times W \times$ thickness 10 mm \times 10 mm \times 0.5 mm	634646-1EA
(single crystal substrate)	(110)	-	undoped	L \times W \times thickness 10 mm \times 10 mm \times 0.5 mm	634700-1EA
	(111)	-	undoped	L \times W \times thickness 10 mm \times 10 mm \times 0.5 mm	634697-1EA
Gallium antimonide, (single crystal substrate)	(100)	-	undoped	diam. \times thickness 2 in. \times 0.5 mm	651478-1EA
Gallium arsenide, (single crystal substrate)	(100)	-	undoped	diam. \times thickness 2 in. \times 0.5 mm	651486-1EA
Gallium phosphide, (single crystal substrate)	(111)	-	undoped	diam. \times thickness 2 in. \times 0.5 mm	651494-1EA
Titanium(IV) oxide, rutile,	(001)	-	undoped	$L \times W \times$ thickness 10 mm \times 10 mm \times 0.5 mm	635057-1EA
(single side polished, single	(100)	-	undoped	$L \times W \times$ thickness 10 mm \times 10 mm \times 0.5 mm	635049-1EA
	(110)	=	undoped	$L \times W \times$ thickness 10 mm \times 10 mm \times 0.5 mm	635065-1EA

Structure

Prod. No.

530999-1G 530999-5G

531014-1G 531014-5G

531006-1G 531006-5G

530964-5G-A

531081-1G

 $\lambda_{abs}/\lambda_{max}$

202 nm

379 nm

Name

シリコンナノワイヤ

アルドリッチでは、さまざまなハイテク用途向けに高純度シリコ ンナノワイヤを販売いたしております。未ドープ型またはドープ 型(p型)の単分散タイプと、さまざまな長さを持つ多分散タイプ の製品を取り揃えております。カーボンナノチューブと同様に、 シリコンナノワイヤも電界効果トランジスタ1や太陽電池2、セン サ3、リチウム電池4、触媒5などへの応用が検討され始めていま す。シリコンナノワイヤは、最先端の方法を用いることで、多くの フレキシブル透明基板上における組み立てや配列が可能です。た とえば、誘電泳動力(dielectrophoretic force)と均一な流体の流 れをうまく組み合わせることで、16,000個を超える電極の間にシ リコンナノワイヤを個々に並べる方法が報告されています。。

シリコンナノワイヤは環境に優しく、生体適合性を有し、修飾もし やすいため、細胞組織工学やバイオセンサ、薬物/遺伝子送達シス テムなどの生物学関連への応用も可能な、優れた材料ですっ。ナノ スケールの直径と高いアスペクト比を持つことで、生きた細胞の 内部へのアクセスが容易であり、細胞内部における分子レベルの 相互作用の研究が始まっています®。シリコンナノワイヤは従来型 のシリコンを用いたマイクロ技術と相性が良く、高品質で高性能 な材料の入手が可能になったことで、これら材料を用いた研究が 急速に増えることでしょう。金ナノワイヤーと共にナノワイヤー を用いた技術がさらに大きく発展することが期待されています。

References

- (1) Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. Nature 2003, 425, 274-278.
- (2) Zhu, J.; Cui, Y. Nat. Mater. 2010, 9, 183-184.
- (3) Fang, C.; Agarwal, A.; Widjaja, E.; Garland, M. V.; Wong, S. M.; Linn, L.; Khalid, N. M.; Salim, S. M.; Balasubramanian, N. Chem. Mater. 2009, 21, 3542-3548.
- (4) Peng, K. Q.; Jie, J. S.; Zhang, W. J.; Lee, S. T. Appl. Phys. Lett. 2008, 93, 033105.
- (5) Tsang, C. H. A.; Liu, Y.; Kang, Z. H.; Ma, D. D. D.; Wong, N. B.; Lee, S. T. Chem. Commun. 2009, 39, 5829-5831.
- (6) Freer, E. M.; Grachev, O.; Stumbo, D. P. Nat. Nanotechnol. 2010, 5, 525-530.
- (7) a) Patolsky, F.; Timko, B. P.; Yu, G. H.; Fang, Y.; Greytak, A. B.; Zheng, G. F. Lieber, C. M. Science 2006, 313, 1100–1104. b) Gao, Z. Q.; Agarwal, A.; Trigg, A. D.; Singh, N.; Fang, C.; Tung, C. H.; Fan, Y.; Buddharaju, K. D.; Kong, J. M. Anal. Chem. 2007, 79, 3291-3297
- (8) Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Nat. Biotechnol. 2005, 23, 1294-1301

ナノ材料の最新情報は www.sigma-aldrich.com/nano-jp まで。

* Products of NanoSys, Inc.

Monodispersed Silicon Nanowires*

Prod. No.	Doping	Approx. Dimen. (D × L)	Dispersant	Conc.	Purity
730866	Undoped	150 nm × 20 μm	Isopropyl Alcohol	~1 µg/mL	>99% Si
730874	P-I-P	150 nm × 20 μm	Isopropyl Alcohol	~1 µg/mL	>99% Si

Polydispersed Silicon Nanowires*

Prod. No.	Doping	Approx. Dimen. (D × L)	Form	Purity
731498	Undoped	$40 \text{ nm} imes 1-20 \ \mu\text{m}$	Powder	>99% Si

Gold Nanowires

Prod. No.	Approx. Dimen. (D × L)	Dispersant	Concentration
716944	30 nm × 45 µm	Water	60 µg/mL
716952	30 nm × 60 µm	Water	50 µg/mL

図1 シリコンナノワイヤを用いた電極 図2 金ナノワイヤのSEM画像

インクジェット印刷 - プリンテッドエレクトロニクスの実現を 可能にする主要技術

Ashok Sridhar¹, Thomas Blaudeck³⁵, and Reinhard R. Baumann^{1,2*} ¹ Department Printed Functionalities, Fraunhofer Research Institute for Electronic Nano Systems (ENAS), Technologie-Campus 3, 09126 Chemnitz, Germany ² Institute for Dritt and Mardia Technology. Departments of Machaevial Facination

² Institute for Print and Media Technology, Department of Mechanical Engineering, Chemnitz University of Technology, 09126, Chemnitz, Germany

⁵ University Linköping, Department of Science and Technology (ITN), 60174 Norrköping, Sweden

*Email: reinhard.baumann@mb.tu-chemnitz.de

はじめに

デジタル印刷技術は、この十年間で情報を視覚化するだけのツー ルから機能を生み出すツールへと進化してきました。「色を超え た印刷(printing beyond color)」という表現は、この変化をうま く表現しています。この一連のデジタル印刷技術は、今もなお視 覚化のための手段として広く使用されていますが、新たな機能性 の開発が進展した結果、特にプリンテッドエレクトロニクス分野 において、効率的な生産を可能とする新たなアイデアと製造方法 が生み出されています。デジタル印刷の基本的な原理は、微細量 の液滴(インク)または固体粒子(トナー)を、対象となる画像や文 字の情報が存在する各ピクセルと直接関連させ、配置することで す。この原理によって、高価な材料(機能性材料など)を、被印刷物 の所定の場所だけに経済的に堆積(選択的な堆積)させることが可 能になります。

本論文では、最も重要なデジタル製造技術の1つであり、プリン テッドエレクトロニクスの実現を可能にする主要技術の1つであ る「インクジェット印刷」について詳細に解説します。インク ジェット印刷技術の分類のほか、材料(インク、被印刷物(基板)) に関連するさまざまな特徴や、前処理と後処理の工程についても 説明します。最後にいくつかの適用例を紹介し、インクジェット 印刷エレクトロニクスの多様な可能性について述べます。

機能性材料とハイテク印刷装置に重点を置いた研究開発が継続的 に進められており、毎日のように新しいイノベーションが生まれ ています。

背景

a a

/jap

Ε

0

. ب ں

ma-aldr

s i g

従来型の印刷

印刷技術は、知識を高い信頼度で伝達、交換、および保存すること によって人類の進歩を速めた、最大の発明の1つです。グーテン ベルグの可動鉛活字による活版印刷の発明から500年以上がた ち、グラフィックアートを再現する基盤として写真が進化したの は前世紀のことです。さらに重要なことは、過去数十年の間に印 刷と電子化された情報技術が効果的に組み合わされたことで、さ まざまな印刷技術が枝分かれしながら進化し、広く利用されるよ うになってきたことです」。 「従来型の印刷技術」には、主にオフセット印刷、グラビア印刷、ス クリーン印刷、およびフレキソ印刷の種類があります。これらは 一般に、再現しようとするあらゆる種類の情報(テキスト、グラ フィック、および写真)の印刷原版もしくは印刷版を必要としま す。したがって、これらの技術を実際に使用する前に、複雑な、時 には面倒な印刷前工程が必要になります。前工程が終了すれば、 フラットベッドスクリーン印刷以外の技術は高速の大規模生産に 使用できます。

デジタル印刷

「デジタル印刷」は、従来の印刷技術とは異なり、物理的な原版を 前もって作る必要のない方法であり、被印刷物やサブレイヤに大 きな力を加えることなく印刷します2。デジタル印刷の基本的な 原理は、情報と直接関連させた微細量の液滴(インク)または固体 粒子(トナー)を、再現する画像の各バイナリー単位に正確に配置 していくことです。そのため、デジタル印刷には従来の印刷が持 つ大きな欠点、つまり、複雑な作業工程、原版の作製や作業を準備 するための金銭的および時間的に大きな投資が必要であるという 点がありません。従来のハイエンド印刷と比較して、デジタル印 刷は特に平均スループットに関していくらかの欠点があるかもし れませんが、その功績は、さまざまな技術やプロセス設計によっ て印刷技術をより多くの人々の手に届くものにしたことです。デ ジタル印刷技術が既存の業界(プリント回路基板など)ですでに稼 動している製造ラインと統合できる可能性が大きいのは、この多 用途性と適応性を備えているためであり、同様に、商業印刷所(オ ンデマンド本)への進出が可能になったり、デスクトッププリン タによって SOHO (small office/home office) に革新をもたらし ています。デジタル印刷技術の特徴的な機能は、大きく次の2つ のグループに分類できます。(1) direct to substrate:情報を直接 印刷媒体(被印刷物)に転送する印刷技術(インクジェット印刷、 熱転写印刷など)、および(2) direct to plate:情報を印刷版に転 送し、続いて印刷媒体に転写する印刷技術(電子写真、マグネトグ ラフィなど)です²。

再現すべき画像やテキストの各ピクセルに情報があるかないか、 というデジタル印刷の基本的な原理によって、機能性材料やその 他の材料を被印刷物上の所定の場所にのみ堆積できるため、選択 的、つまり経済的に堆積させることが可能です。

プリンテッドエレクトロニクス

「プリンテッドエレクトロニクス」と「有機エレクトロニクス」は同 じ意味で使われることがありますが、必ずしも同じグループの技 術を指しているわけではありません。しかしながら、両者が多く の実現技術と方法論を共有していることは事実です。厳密には、 「プリンテッドエレクトロニクス」は、従来型印刷とデジタル印刷 の両方の印刷技術を利用して電子構造、デバイス、および回路を 作ることを指し、どのような機能性材料(インク)や基板を用いる かには関係ありません。唯一の必要条件は、機能性材料が液相か ら処理可能でなければならないことです。同じ意味で、「有機エ レクトロニクス」は導電性ポリマーなどの有機材料を用いて、リ ジッドおよびフレキシブル基板上に電子構造、デバイス、および 回路を作ることに対応します。したがって、「フレキシブルエレ

インクジェッ

ト印刷

ī

プリンテッドエレクトロ

ニクスの実現

見を可能.

にする主要技

徧

クトロニクス」は、プラスチックまたは紙でできた折り曲げるこ とのできる基板に注目しています。いずれにせよ、プリンテッド エレクトロニクスの進歩は新しい展望を切り開き、電子機器や電 子回路のコンセプト、設計、製造、パッケージング、および応用に 多くの可能性をもたらしています。

印刷プロセスのもつ付加的な特性、たとえばインクとして調合で きる材料の範囲や、プロトタイプから大量生産までのさまざまな 生産スケールへの適応可能性は、エレクトロニクス製造に印刷プ ロセスを展開するための重要な要素です。ほぼすべての印刷技 術、特に従来の印刷技術がプリンテッドエレクトロニクスにおい て使用されていますが、主に使用されているのはスクリーン印刷 とインクジェット印刷です³。図1に、プリンテッドエレクトロニ クスに関連する印刷技術とその特性について示します。

オフセット印刷

- ・印刷パターンは印刷版表面の濡れ性の違いによって定義される
- ・0.5 µmまでの薄い膜で印刷が可能、高分解能(<20 µm)
- ・インクの粘性率:40 ~ 100 Pa・s

グラビア印刷

- ・印刷パターンは原版の表面レリーフ(凹)によって定義される
- ・広い範囲の厚さで印刷が可能(約1~8μm)、高分解能(<20μm)
- ・インクの粘性率: 0.05~0.2 Pa·s

フレキソ印刷

- ・印刷パターンは原版の表面レリーフ(凸)によって定義される
- ・約1μmの薄い膜で印刷が可能、高分解能(約20μm)
- ・インクの粘性率: 0.05 ~ 0.5 Pa·s

スクリーン印刷

- ・印刷パターンは印刷原版の開口部によって定義される
- ·厚膜(>10µm)に印刷が可能、低分解能(約100µm)
- ・グラビアインクからオフセットインクまでの極めて広い粘性率範囲

インクジェット印刷

- ・原版作製の必要がない、液滴のサイズはノズルの直径と駆動波形に よって決まる
- ・100 nmまでの薄い膜で印刷が可能、中程度の分解能(約50 μm)
- ・インクの粘性率:1 ~ 20 mPa・s

図1 プリンテッドエレクトロニクスに関連する印刷技術とその重要な特性1,35

図1に挙げた印刷技術のうち、インクジェット印刷を除くすべて の方法が本質的に従来型の印刷技術であることに注意してくださ い。それにもかかわらず、次の章に挙げる理由から、デジタルイン クジェット印刷はプリンテッドエレクトロニクスの重要な実現技 術であると考えられています。これより以降では、インクジェッ ト技術の分類、仕様、および要件について詳しく説明し、さらに応 用例を示すことで、プリンテッドエレクトロニクスに適した技術 であることを示していきます。

インクジェット印刷技術

インクジェット印刷技術では、流路内のインクからインク滴を生成し飛び出させます。この液滴の直径はノズルの直径にほぼ対応する10~150μmで⁶、その体積はピコリットルの範囲です。インクジェット印刷がプリンテッドエレクトロニクスに適した技術である理由は以下のとおりです。

- ・幅広い材料をさまざまな種類の被印刷物に1滴ずつ選択的に堆 積させる非接触プロセスである。
- ・作業場の床面積要件、初期投資、および印刷準備に必要な試運転 時間が、他のほとんどの従来技術より少ない。
- ・プロトタイプから商用大量生産までの幅広い生産スケールに適 している。
- インクの消費量と廃棄する材料が最小限である。
- ・プロセス連鎖の中での位置付けを柔軟に変更することができる。
- ・パターン化された薄膜を作製できる。これは有機エレクトロニ クスにおいて鍵となる要件ですが、極めて複雑な集積回路(IC) の製造には、極めて短いトランジスタチャネル長の作製に必要 な高い空間分解能を実現するために、標準的なインクジェット 印刷とは異なる特殊な技術が用いられています^{7a}。

最後に、他の技術で製造された電子構造やデバイスをすでに持っ た基板にも、インクジェット印刷によって機能性を追加すること ができます。この特徴は、インクジェット技術の非接触、マスクレ ス、原版が不要という性質と、プリントヘッドを基板の3次元座 標のいかなる場所にも直接移動できる自由度によって可能とな ります。

分類

インクジェット技術は概ね2つのカテゴリーに分類されます。液 滴の生成メカニズムによって、「連続インクジェット(CJ): continuous inkjet)」と「ドロップ・オン・デマンドインクジェッ ト(DOD: drop-on-demand inkjet)」に分けられ⁶、DOD印刷は さらに、「サーマルインクジェット」、「ピエゾ式インクジェット」、 および「静電インクジェット」の3種類に分類されます。図2に、イ ンクジェット印刷技術の全体的な分類とそれぞれの主な特徴を示 します。

CIJ印刷は、極めて高い液滴発生周波数(20~60 kHz)を持つにも かかわらず、プリンテッドエレクトロニクスに広く使われている とは言えません。その理由として、噴き付けた後の再循環プロセ スがインクの汚染につながる可能性が挙げられます。その上、CIJ は、再現する画像やテキストの各ピクセルに情報があるなしにか かわらず液滴を連続して発生させるため、潜在的に無駄の多い方 法です。ただし、CIJには、被印刷物の形状が平坦でない場合に使 用できるというメリットがあります。

ー方のDODインクジェット技術については、主に以下の理由に よって、ピエゾ式インクジェットがサーマルインクジェットと静 電インクジェットに比べてはるかに優れた方式です⁸。

- ・サーマルインクジェットでは、熱負荷が周期的にかかること よって、インク中に存在する機能性材料が劣化する可能性があ ります。その一方で、ピエゾ式インクジェットは等温プロセスで す。それにもかかわらず、サーマルインクジェットが無機量子 ドットを用いた発光ダイオードの製造に適していることが近年 実証されています ⁷。
- ・ピエゾ式インクジェットでは、サーマルインクジェットや静電イン クジェットよりはるかに広い範囲のインク溶媒を使用できます。
- ・静電インクジェットに必要な投資とランニングコストは、ピエ ゾ式インクジェットよりはるかに高くなります。さらに、この技 術はまだ開発段階にあり、サーマルインクジェットやピエゾ式 インクジェットほど成熟した技術ではありません。

1.連続インクジェット印刷

- ・インクカラムに圧力がかかる
- ・インク液滴が連続的にノズルから噴射される
- ・帯電した液滴が電場によって偏向され、位置決めされる
- ・残った液滴はガターで回収し、再利用される

2. ドロップ・オン・デマンドインクジェット印刷

- 液滴は必要に応じて、例えば画像ピクセルがオンのときに噴射される
- ・連続インクジェット印刷よりシステムが単純である
- ・駆動方式によって以下のように分類される

2a. サーマル方式

- ・加熱エレメントでインクを瞬間加熱する
- ・気泡が生成されてインク液滴をノズルから噴射する

2b. ピエゾ方式

- ・圧電変換器(PZT: piezoelectric transducer)に電圧パルスを印加する
- ・PZTが作動してインク流路に音波を伝播する
- ・インクジェット液滴をノズルから噴射する

2c. 静電方式

- ・電場がインクジェット機器と被印刷物の間に存在する
- 液滴生成は、インクとノズル間の表面張力比や電場との複雑な相 互作用による
- ・プリントヘッドに加える信号によって、液滴生成の力を調整する

図2 最も一般的なインクジェット技術の分類18

ピエゾ式インクジェット印刷

ピエゾ式インクジェットシステムは、その名前が示すとおり圧電 変換器(PZT)から構成され、電圧パルスで駆動します。この効果 は、「逆圧電効果」と呼ばれます。市販されている印刷システムの 電圧パルスの周波数は、一般に1 kHz ~ 20 kHzです。ピエゾが変 形する結果、圧力(音)波が形成されてインクチャネル内に伝播し ます。液滴の噴射は音響周波数によります⁶。

図3a) ピエゾの駆動に用いるバイポーラ波形の例、b) ピエゾ式インク ジェットプリントヘッドのノズルから液滴が生成する様子 図3aに、広く用いられているバイポーラ波形⁹⁸と各セグメントの 簡単な説明を示しました。これはほんの一例に過ぎず、一般にイ ンクジェットプリントヘッドには多くの異なる種類の波形を印加 して液滴を生成します。印加する波形のプロファイルと大きさは、 ノズルの大きさや使用するインクの流動性、および目的とする液 滴サイズと速度によって決まります。図3bは、ピエゾ式インク ジェットノズルから液滴が生成する様子を示した連続写真です。

インクジェット印刷に対する要件

これまでに紹介したさまざまな種類のインクジェット印刷技術 は、材料、被印刷物の前処理、および印刷された構造体の後処理と いう点で多少の差異はあれ同じような要件を持っていますが、こ の章では、特にピエゾ式インクジェットに必要な要件を重点的に 取り上げます。

被印刷物(基板):前述したように、インクジェット印刷そのもの は被印刷物に依存しません。リジッド、フレキシブル、補強の有無 など、あらゆるタイプの基板を使用できます。ただし、印刷された インクと基板との相互作用が、印刷された構造体の精度とロバス ト性を決める決定的な役割を果たすため、インクの特性と基板の 特性をうまく適合させる必要があります。したがって、印刷前に 基板表面を処理して、濡れ性、付着性などを改善するのが一般的 であり、プラズマ処理やコロナ処理が広く使用されます。高精細 度構造を得るには、基板表面を親水性領域と疎水性領域に区分け するように基板のパターニングが行われます。。

インク:プリンテッドエレクトロニクスに使用されるインクは、 1種類以上の溶媒中に分散(顔料タイプ)または溶解(染料タイプ) しています¹⁰。溶媒の役割は、機能性材料がプリントヘッドを通し てノズルから噴射される際の輸送手段を提供することです。プリ ンテッドエレクトロニクスの観点では、機能性材料は、導電性、半 導体性、抵抗性、誘電性などの電子的/電気的な機能を果たしま す。現在、このような機能性をもつ多くの種類のインクが市販さ れています。

ピエゾ式インクジェットインクの主な特性は、粘性率が20 mPas未満^{11a}、表面張力の値が80 mN·m⁻¹未満^{11b}、溶液/分散液中の インクがプリントヘッド内で安定している、さらに好ましくはイ ンク成分の粒径がノズル開口部の大きさよりはるかに(桁違いに) 小さい^{11c}ことです。これらの値はガイドラインに過ぎず、個々の 値はシステムによって異なる可能性があります。また、粒子の充 填量も、印刷プロセスの安定性を決める主な要因です。

焼結/硬化:グラフィック印刷では、インクの堆積プロセスと印刷層の乾燥直後から機能性材料が光吸収(したがって、発色)しますが、「色を超える」機能性インクを使用するには、堆積したインク層の機能性を発現させるための適切な変換が必要です。そのためには、溶媒のほか、インク内に存在する界面活性剤、分散剤、保湿剤、付着強化剤などの添加剤を取り除きます。例えば、金属ナノ粒子インク(顔料系)の場合は、印刷した構造体を焼結することによってナノ粒子が互いに連結し、導電性を持つ連続した浸透構造を形成できるようにしなければなりません。MODインク(metalorganic decomposition ink、染料系)の場合は、金属クラスターを形成できるように分子錯体を分解しなければなりません。いずれの場合も、焼結するには一般的に熱を加えます。熱的に不安定なフレキシブルプラスチック基板を利用するために、連続¹²⁴、瞬間UV照射^{12b}、プラズマ処理^{12c}、レーザー支援焼結¹²⁴、マイクロ波

com/jap

i c h .

a-ald

а В

s i

インクジェット

刷

.

プリンテッドエレクトロニクスの実現を可能にする主要技術

支援焼結^{12e}、DC/AC電場^{12f,12g}、または化学焼結^{12h}など、さまざま な焼結方法が提案されています。加熱によって金属ナノ粒子イン クが焼結していく過程を図4に示しました。

- A: Nanoparticles dispersed in solvent
- B: Solvent evaporation due to heating
- C: Evaporation of other additives
- D: Sintering of nanopartaicles/increase in grain size

図4金属ナノ粒子を用いたインクの焼結過程を示した概略図13

焼結によって得られる品質は重要な課題です。印刷された構造体の密度は、残渣のために、焼結後であっても通常は100%未満です。その上、通常の焼結温度は150℃を超える温度であり、多くのポリマー基板は耐えることができないため、熱焼結はすべての基板に適した方法ではありません。有機ポリマーインクの場合、印刷された構造体は焼結ではなく硬化されます。ここでいう硬化とは、架橋によってポリマーを硬くすることを意味します。

応用例

インクジェット印刷がプリンテッドエレクトロニクスに適してい ることを示す応用例は数多くあり、ここでは数例をご紹介します。

図5 TU Chemnitz/Fraunhofer ENAS(ドイツ)によって銀インクのインク ジェット印刷で作製された、868 MHzの共振周波数を持つ平面ダイポール アンテナ¹⁴

ーつの例として、図5にフレキシブルおよびリジッド基板に極超 短波(UHF)領域用平面ダイポールアンテナをインクジェット印 刷した例を示しました¹⁴。同じ周波数領域用のフィルターや伝送 線、パッチアンテナもインクジェット印刷によって作製されてい ます^{8,15}。

インクジェット印刷は受動部品の製造において成功を収めていま すが、この方法は、有機ELや高分子LED(OLED, PLED)の製造にお いても、スピンコートよりも優れた、効率的な方法です。実際、イ ンクジェット印刷を利用した全ポリマー型薄膜トランジスタ (TFT)の高分解能パターニングがすでに行われています。ところ が、これらの素子は構成している活性層の移動度が低いために、 現在はRFID(radio frequency identification)タグなどの低性能 用途に限定されています。その上、スイッチング速度は低速です ¹⁶⁻¹⁷。活発に研究されているもう1つの分野は太陽エネルギーで す。インクジェット印刷された太陽電池の作製が、Konarka Technologies Inc.によって報告されています。現在、無機材料を 利用したインクジェット印刷による高効率太陽電池についての研 究が進められています¹⁷。

結論および展望

インクジェット印刷は、電子機器の製造方法を革新する大きな可 能性を持っています。市場には、すべてがインクジェット印刷に よって作製された製品は多くはありませんが、さまざまな課題を 克服するための取り組みが本格化しています。

インクジェット印刷がエレクトロニクス分野において確固たる役 割を果たすための重要な要素の1つは、材料開発、すなわちイン ク材料の開発の進展が欠かせません。信頼性の高い印刷性に加え て低い焼結温度での高い移動度の実現など、優れた性能を発揮す る機能性材料を含むインクによって、さまざまな基板材料への高 性能電子デバイスのインクジェット印刷が可能となります。ま た、インクジェット印刷の成功は、焼結および硬化技術に代わる 代替技術の開発がいかに早く進み、印刷したフレキシブル基板へ の加熱を最小限に抑えることができるかにもかかっているとも言 えるかもしれません。最終的には、インクジェット印刷の分解能 がフォトリングラフィよりはるかに低いことが、高密度電子回路 製造に応用する際の制約になると思われます。

References

- (1) Kipphan, H. Ed.; Handbook of Print Media; Springer, Germany, 2001
- (2) Océ Digital Printing; Océ Printing Systems GmbH, Germany, 10th ed., 2006.
- (3) Printed Electronics: A Manufacturing Technology Analysis and Capability Forecast; NanoMarkets report: www.nanomarkets.net, 2007.
- (4) Parashkhov, R.; Becker, E.; Riedl, T.; Johannes, H.-H.; Kowalsky, W. Proc. IEEE 2005, 93, 7.
- (5) Vornbrock, A. D. L. F.; Sung, D.; Kang, H.; Kitsomboonloha, R.; Subramanian, V. Org. Electron. 2010, 11, 2037.
- (6) Derby, B. Annu. Rev. Mater. Res. 2010, 40, 395.
- (7) a) Sekitani, T.; Noguchi, Y.; Zschieschang, U.; Klauk, H.; Someya, T. *Proc. Nat. Acad. Sci.* **2008**, *105* (13), 4976; b) Wood, V.; Panzer, M. J.; Chen, J. L.; Bradley, M. S.; Halpert, J. E.;
 Bawendi, M. C.; Bulovic, V. *Adv. Mater.* **2009**, *21* (21), 2151.
- (8) Sridhar, A. An Inkjet Printing-Based Process Chain for Conductive Structures on Printed Circuit Board Materials. Ph.D. Thesis, University of Twente, the Netherlands, 2010.
- (9) a) Herlogsson, L.; Noh, Y. Y.; Zhao, N.; Crispin, X.; Sirringhaus, H.; Berggren, M. Adv. Mater. 2008, 20 (24), 4708; b) Lim, J. A.; Lee, W. H.; Kwak, D.; Cho, K. Langmuir 2009, 25 (9), 5404. c) Wallace, D. B.; Shah, V.; Hayes, D. J.; Grove, M. E. J. Imaging Sci. Technol. 1996, 40, 5.
- (10) Kamyshny, A.; Ben-Moshe, M.; Aviezer, S.; Magdassi, S. Macromol. Rapid Commun. 2005, 26, 281–288.
- (11) a) de Gans, B.-J.; Duineveld, P. C.; Schubert, U. S. Adv. Mater. 2004, 16, 3;
 b) de Gans, B. J.; Kazancioglu, E.; Meyer, W.; Schubert, U. S. Macromol. Rapid Commun. 2004, 25, 292; c) Shin, D. Y.; Smith, P. J. J. Appl. Phys. 2008, 103 (11), 114905.
- (12) a) Jahn, S. F.; Blaudeck, T.; Baumann, R. R.; Jakob, A.; Ecorchard, P.; Rüffer, T.; Lang H.; Schmidt, P. *Chem. Mater.* **2010**, *22*, 10; b) Yung K. C.; Gu, X.; Lee, C. P.; Choy, H. S.; *J. Mater. Proc. Tech.* **2010**, *210* (15), *2268*; c) Reinhold I.; Hendriks, C. E.; Eckardt, R.; Kranenburg, J. M.; Perelaer, J.; Baumann, R. R.; Schubert, U. S. *J. Mater. Chem.* **2009** *19* (21) 3384; d) Yung, K. C.; Plura, T. S.; *Appl. Phys. A: Mater. Sci. Proc.* **2010**, *101*, 393; e) Perelaer J.; de Gans, B. J.; Schubert, U. S. *Adv. Mater.* **2006**, *18* (16), 2101; f) Allen M. L.; Aroniemi M.; Mattila, T.; Alastalo, A.; Ojanpera, K.; Suhonen, M.; Seppä, H. *Nanotechnology* **2008**, *19* (17), 175201; g) Allen M. L.; Leppäniemi, J.; Vilkman, M.; Alastalo, A.; Mattila, T. *Nanotechnology* **2010**, *21* (47), 475204; h) Valeton, J. J. P.; Hermans, K.; Bastiaansen, C. W. M.; Broer, D. J.; Perelaer, J.; Schubert, U. S.; Crawford, G. P.; Smith, P. J. *J. Mater. Chem.* **2010**, *20* (3), 543.
- Harima Silver Nanopaste (NPS-J) Datasheet; Harima Chemicals Inc., Japan.
 Zichner, R.; Siegel, F.; Hösel, M.; Baumann, R. R. Proceedings of the LOPE-C
- **2010**, pp. 13-16.
- (15) Mantysalo, M.; Mansikkamaki, P. AEU Int. J. Electron. Commun. 2009, 63, 1.
- (16) Ben-Tzvi, P.; Rone, W. Microsyst. Technol. 2010, 16, 3.

プリンテッドエレクトロニクス用インク材料

Name	Structure	Concentration	Resistivity	Form	Prod. No.
Silver nanoparticle ink, SunTronic® Silver*	Ag	in ethanol and ethanediol 20 wt. % (dispersion in organic solvents)	volume resistivity 5-30 μΩ-cm (after annealing @ 150-300 °C)	-	719048-5ML 719048-25ML
Silver nanoparticle ink, Silverjet DGP-40LT-15C**		30-35 wt. % in triethylene glycol monomethyl ether	11 μΩ-cm surface tension 35-38 dynes/cm	dispersion	736465-25G 736465-100G
Silver nanoparticle ink, Silverjet DGP-40TE-20C**		30-35 wt. % in triethylene glycol monomethyl ether	~7 μΩ-cm surface tension 35-38 dynes/cm	dispersion	736473-25G 736473-100G
Silver nanoparticle ink, Silverjet DGP-45HTG**		30-35 wt. % in triethylene glycol monomethyl ether	~2 μΩ-cm surface tension 35-38 dynes/cm	dispersion	736481-25G 736481-100G
Silver nanoparticle ink, Silverjet DGH-55LT-25C**		50-60 wt. % in tetradecane	27-30 dynes/cm ~2.7 μΩ-cm	dispersion	736503-25G 736503-100G
Silver nanoparticle ink, Silverjet DGH-55HTG**		50-60 wt. % in tetradecane	~2.2 μΩ-cm surface tension 27-30 dynes/cm	dispersion	736511-25G 736511-100G
Silver, Silver Paste DGP80 TESM8020**		70-80% solid content in α-Terpineol	1-3 μΩ-cm	paste (microparticles)	735825-25G

*Product of Sun Chemicals, Inc.

**Product of Advamced Nano Products, Inc.

テクニカルサポート Tel:03-5796-7330 Fax:03-5796-7335 E-mail:sialjpts@sial.com

Plastic Substrates

Name	Structure	Dimensions	Surface Resistivity (Ω/sq)	Prod. No.
Indium oxide coated PET, IO-PET	In ₂ O ₃	slide, L \times W \times D 150 \times 150 \times 0.2 mm	≤10	700177-5PAK 700177-10PAK
Indium oxide coated PET, IO-PET		slide, L \times W \times D 150 \times 150 \times 0.2 mm	60-100	702811-5PAK 702811-10PAK
Indium tin oxide coated PET, ITO-PET	In ₂ O ₃ / SnO ₂	sheet, L × W × D 1 ft × 1 ft × 5 mil *	60	639303-1EA 639303-5EA
Indium tin oxide coated PET, ITO-PET		sheet, L \times W \times D 1 ft \times 1 ft \times 5 mil *	100	639281-1EA 639281-5EA

* 1 mil = 1/1000 inch = 25.4 µm

Glass Substrates

Name	Structure	Dimensions	Surface Resistivity (Ω/sq)	Prod. No.
Indium tin oxide coated glass slide, rectangular, ITO	In_2O_3 / SnO_2	slide, L \times W \times D 75 \times 25 \times 1.1 mm	8-12	578274-10PAK 578274-25PAK
Indium tin oxide coated glass slide, rectangular, ITO		slide, L \times W \times D 75 \times 25 \times 1.1 mm	15-25	636916-10PAK 636916-25PAK
Indium tin oxide coated glass slide, rectangular, ITO		slide, L \times W \times D 75 \times 25 \times 1.1 mm	30-60	636908-10PAK 636908-25PAK
Indium tin oxide coated glass slide, rectangular, ITO		slide, L \times W \times D 75 \times 25 \times 1.1 mm	70-100	576352-10PAK 576352-25PAK
Indium tin oxide coated glass slide, square, ITO		slide, L \times W \times D 25 \times 25 \times 1.1 mm	8-12	703192-10PAK
Indium tin oxide coated glass slide, square, ITO		slide, L \times W \times D 25 \times 25 \times 1.1 mm	30-60	703184-10PAK
Indium tin oxide coated glass slide, square, ITO		slide, L \times W \times D 25 \times 25 \times 1.1 mm	70-100	703176-10PAK
Fluorine doped tin oxide coated	F/SnO ₂	50 × 50 mm	~7	735140-5EA
glass slide, FTO, TEC 7		100 × 100 mm	~7	735159-5EA
		300 × 300 mm	~7	735167-1EA
Fluorine doped tin oxide coated		50 × 50 mm	~8	735175-5EA
glass slide, FTO, TEC 8		100 × 100 mm	~8	735183-5EA
		300 × 300 mm	~8	735191-1EA
Fluorine doped tin oxide coated		50 × 50 mm	~10	735205-5EA
glass slide, FTO, TEC 10		100 × 100 mm	~10	735213-5EA
		300 × 300 mm	~10	735221-1EA
Fluorine doped tin oxide coated		50 × 50 mm	~15	735248-5EA
glass slide, FTO, TEC 15		100 × 100 mm	~15	735256-5EA
		300 × 300 mm	~15	735264-1EA

最新マイクロおよびナノ製造プロセス用導電性ポリマー

Rafal Dylewicz¹, Norbert Klauke², Jon Cooper² and Faiz Rahman^{1*} ¹ Optoelectronics Research Group, School of Engineering, University of Glasgow, Rankine Building, Oakfield Avenue, Glasgow G12 8LT, United Kingdom ² Bioelectronics Research Centre, School of Engineering, University of Glasgow, United Kingdom

*Email: Faiz.Rahman@glasgow.ac.uk

はじめに

現在、ポリアニリンやポリチオフェン、ポリフルオレンなどの導 電性ポリマーの、有機エレクトロニクスや光エレクトロニクス分 野への応用が非常に注目されています。これら材料は、例えば、有 機薄膜トランジスタや有機発光ダイオードの製造に使用されま す。本論文では、導電性ポリマー薄膜の新しい応用、つまり、最先 端パターニング技術である電子線リソグラフィ(EBL:electronbeam lithography)や集束イオンビーム(FIB: focused ion beam)エッチングなどを用いる際に、作業上厳しい制約を伴う基 板上の電荷拡散層として導電性ポリマーを使用した事例について 報告します。まず、酸化亜鉛1や窒化ガリウム2などのワイドバン ドギャップ半導体への電子線リソグラフィについて、続いてガラ スへの集束イオンビームパターニングの際のポリチオフェン薄層 による蓄積した電荷の拡散特性について紹介します。前者のEBL は、HSQ(hydrogen silsesquioxane)ネガ型電子線レジストへの 高密度の周期性ナノパターン作製に用いられ、その後のドライ エッチング工程によって、半導体にパッシブフォトニックデバイ スを作ることができます。後者のFIBエッチングは、哺乳類細胞の 電気生理学研究。において通常使用されるキャピラリーガラスの 作製など、生物医学分野への応用に用いられます。

いずれの場合も、市販のpoly(3,4-ethylenedioxythiophene)poly(styrenesulfonate)(PEDOT:PSS)の2.5 wt.%水分散液を使 用しました。このポリマー膜は高い導電性と優れた耐酸化性を持 つため、電磁気遮蔽やノイズ抑制用途に適しています。平坦なガラ ス基板に堆積させたポリチオフェン膜の光透過スペクトルは、特 徴的な吸収のない透過曲線を示すため²、可視光スペクトル全域と 近赤外および近紫外領域で高い透明性を有していることが分かっ ています。さらに、ポリチオフェン薄膜の吸光係数kの値は、回転 検光子型エリプソメーターで実際に測定した結果から、可視光ス ペクトルを含む幅広い波長域で無視できることが分かっていま す。このように、ポリチオフェン電荷拡散層は光学的に透明なた め、サンプル表面が見やすく、デバイス上の微細形状に対するパ ターニングの調整に必要な位置合わせ操作が容易になります。

PEDOT: PSS 導電性ポリマーを使用した サンプル処理

電子線リソグラフィ(EBL)用導電性ポリマー

バルクZnOやサファイヤ基板上のGaN/AINの上に堆積させた HSQネガ型レジストに、高密度高分解能パターンを素早くEBL露

光するための安価な処理方法が開発されています。酸化亜鉛 (ZnO)は、青色発光素子や薄膜トランジスタ(TFT: thin-film transistor)をはじめ、レーザーダイオードも製造できる可能性を 持つことから、近年大きな注目を集めているワイドバンドギャッ プ半導体です。このII-VI族酸化物半導体は、短波長発光ダイオー ドやレーザーダイオードの製造に用いられている標準的物質であ る窒化ガリウム(GaN)とほぼ同じバンドギャップ(約3.4 eV)を 持っています。さらに、ZnOは単なる代替材料としてだけではな く、励起子束縛エネルギーが高いことやバルク材料が入手しやす いことなど、同様の素子を製造する上でGaNよりも多くの利点を 持っています。一方で、III-V族窒化物(GaN、InN、およびAIN)は、 今後光エレクトロニクスでの応用が期待されている有望な材料で す。これらの新しい物質は、可視/紫外境界および紫外スペクトル 域に不可欠な材料ではありますが、青色光と緑色光の発光と検出 にも極めて有用です。すべてのIII-V族窒化物は直接バンドギャッ プを持っていますが、これは発光器や光検出器のいずれを作る場 合にも間接バンドギャップ半導体よりも有利な特性です。また、 InNとAINは固溶体を形成することができるため、光特性や電気 特性の調整が可能です。さらに、GaNは高い力学的安定性と熱安 定性も示すため、パワートランジスタ、高出力LEDやレーザーな どの高温エレクトロニクスおよび光エレクトロニクス分野への応 用に極めて有用です。

ZnOとGaNは蓄積された電荷を効率的に拡散できないため、電 子顕微鏡による観察や電子線リソグラフィによるパターニングが 容易ではありません。そのため、ワイドバンドギャップ半導体の 電子線リソグラフィには、電子線レジストの上に堆積させた薄い 導電性金属(通常はアルミニウム)を使用するのが一般的です。さ らに、ZnOは金属膜の除去に使用する酸と塩基の両方に容易に反 応する両性酸化物であるために、その処理が困難です。本稿では、 金属層蒸着よりもはるかにシンプルな方法であり、特別なレジス トの調製を必要とせずに幅広く使用できる方法について述べま す。図1に、市販のPEDOT:PSS 導電性ポリマーを使用して電子線 リソグラフィで電荷を拡散させる、エピタキシャルGaN/AIN/サ ファイヤの例を示します。この処理では、HSQコートした試料の 上に導電性ポリマー(PEDOT:PSS)をスピンコートし、レジストに 対して電子線で高密度パターンを描画した後、PEDOT:PSS層を除 去し、露光したHSQ電子線レジストを最後に現像します。ここで は、電荷拡散層を使用しない場合と、HSQレジスト上に100 nm 厚の導電性ポリマー層を堆積させた場合の2つのケースについて 実験結果(図2)を比較します。図2は、442 µC/cm²の線量で露光 して得たフォトニック結晶(PhC)パターンを走査型電子顕微鏡 (SEM)で観察した結果を、2kと70kの2つの倍率で示したもので す。作製したナノパターンは、三角格子状の孔(550 nm間隔、孔 の直径440 nm)を持つ50 µm×10 µmの面積のフォトニック結 晶導波路構造、パターンW1(一列の孔を取り除いたもの)とW3 (三列の孔を取り除いたもの)です。HSQのみを用いた場合(図 2a)、周期パターンに著しい露出オーバーが見られます。配列の端 には輪郭が適切に示された孔がありますが、フォトニック結晶格 子の中央部には、SEM観察でコントラストが減少することによっ て示される強い近接効果の兆候が見られます。一方、導電性ポリ マーを使用した場合は、高コントラストSEM写真にも示されてい るように、明確な輪郭を持つ孔が均一性の高いフォトニック結晶 格子の中で得られます(図2b)。

最新マイクロおよびナ

ノ製造プロセス用導電性ポリ

a a

com/jap

図1 導電性ポリマー電荷拡散層を使用した電子線リソグラフィによる HSQ/PEDOT:PSS/GaN/AIN/AI₂O₃サンプルのパターニングの概略図。a)ス ピンコートによるPEDOT:PSS薄膜の堆積、b)電子線を用いたHSQレジス トへのパターン描画、c)脱イオン水の温浴によるPEDOT:PSSの除去、d) HSQレジストの現像。高密度ナノパターンがレジスト層に作製されます。

スピンコート可能な導電性ポリマーは水溶性を持つため、処理後 に容易に取り除くことができます。そのため、酸化亜鉛などの両 性酸化物試料の処理に最適な方法といえます。また、ポリマー拡 散層を使用すると、露光レンジが広くなることと、HSQでの高密 度パターンの露光オーバーを避けることができるため、窒化ガリ ウムの処理にも適しています。この新しい方法では、ZnOおよび GaN試料の処理を以前よりはるかにシンプル、迅速、かつ安価に 行うことができるようになりますが、後に示すように、その他多 くの半導体/誘電材料へのEBL露光にも適用できる可能性を持っ ています。

図2 バルクZnO試料にあるHSQレジスト内のフォトニック結晶格子の走 査型電子顕微鏡(SEM)写真(上から見た図)。電子線露光量は442 μC/cm²。 a) 導電性ポリマーを使用しない場合、b) 導電性ポリマー薄膜を使用した 場合。

集束イオンビーム(FIB)エッチング用導電性ポリマー

PEDOT:PSS 導電性ポリマーで作製した水溶性膜を、ガラス材料の イオンミリングでの帯電を防ぐために使用しました。イオンミリ ングは、細く絞ったイオンビームを使用して試料をナノメートル の精度で削るための方法です。これは、ビームの位置決めとミリ ングの進捗の両方を、走査型電子顕微鏡を使用して in-situ で観察 することによって可能になります。我々の実験では、マイクロス ケールでパターニングするターゲット材料としてガラスキャピラ リー管を使用しました。ガラスキャピラリー管は、哺乳類細胞の 電気生理学的研究に広く使用されており(例えば、パッチクランプ 用マイクロ電極)、局所的に加熱したキャピラリー管を引っ張るこ とで、直径1µm~100µmの開口部を持つ先の細くなった先端 部を作ります。こうして作製したキャピラリー管の先端部は、溶 液中の物質の濃度を空間的および一時的に規定した方法によって 局所的に変化させる目的で、非常によく使用されています3。ガラ スキャピラリー管を引き伸ばすことで、薄壁(厚さ約5~10 um) を持つ中空フィラメント(内径約30 µm)を作ることができます。 このフィラメントの決められた場所に孔を開けると2つの空間 (毛細管の内側と外側)ができ、その間の連絡は毛細管壁の孔に よってのみ行われます。液体を満たした毛細管の一方の端から圧 力をかけ、もう一方の端を閉じることで、液体をあらかじめ定め た場所に拡散させることができます。これは、キャピラリー管の 壁の開口部を通って液体が毛細管内部から外部の溶液に広がるた めです。形状のはっきりした開口部をキャピラリー管の壁に開け るために、FIBパターニングを使用しました。FIB処理には、導電性 コーティング、例えば不活性アルゴンガス雰囲気でのスパッタリ ングによる AuPd 金属層のコーティングなどが必要です。これは、 ガラス材料の帯電を防ぎ、イオンビームのドリフトを避けるため です。理想的には、後に行う光学試験(光学顕微鏡)におけるガラ スの透明性を再度得るために、ミリング処理の後で導電性膜を取 り除くことが望まれます。従来は、キャピラリー管に薄いAuPd層 をスパッタコーティングし、ミリング処理後にHCN+KOH蒸気 を満たした容器内に浸漬して金属層を除去していました4。この 方法では極めて有毒な KCN 粉末を取扱う必要があり、HCN ガス が発生します。このように、従来の方法では非常に注意深く作業 を行う必要があるため、スパッタコーティングに代わる方法が望 まれています。ここでも、導電性有機ポリマー膜が最適な解決策 になります。本論文のケースでは、キャピラリー管をPEDOT:PSS 水分散液が入った容器に入れてゆっくり引き上げることによっ て、ガラスの表面にポリマー薄膜を固定化するという単純な ディップコーティング法でPEDOT:PSS 膜をガラス表面に堆積さ せました。FIBミリング処理の後、キャピラリー管を水につけると ポリマー膜は容易に除去されます。最小直径は、それぞれ図3aと 3bに示すように5µmでした。

図3 ガラスキャピラリー管の集束イオンビームパターニング。a) PEDOT:PSS層を利用して処理したキャピラリー管の壁に作製した開口部の 走査型電子顕微鏡写真、b) 作製したガラスキャピラリー管の透過(上)、蛍 光(下)共焦点光学顕微鏡写真。ガラスキャピラリー管の下側の壁に3つの 孔があることに注意してください。蛍光ビーズ(直径が約1µmの微小粒 子)が孔の内部から下流に向かって高い密度で詰まっていることから、作製 した孔を通して蛍光ビーズがキャピラリー管の外部から内部に流れ込んで いることが分かります。 最新マイクロおよびナノ製造プロセス用導電性ポリマ

結論

PEDOT:PSSポリマーが、電子線リソグラフィと集束イオンビーム ミリングのいずれにおいても優れた電荷拡散能を持つことが実験 的に示されました。PEDOT:PSS拡散層を使用すると、サファイヤ (Al₂O₃)基板上の窒化ガリウム(GaN)や酸化亜鉛(ZnO)、溶融シ リカ、ニオブ酸リチウム(LiNbO₃)、シリコンカーバイド(SiC)、ダ イヤモンド(C)などのさまざまな基板に対する処理を、よりシン プルに、迅速、かつ安価に行うことができるようになります。

謝辞

英国Glasgow大学のJames Watt Nanofabrication Centre (JWNC)とKelvin Nanocharacterisation Centre (KNC)の技術ス タッフに感謝いたします。また、エリプソメーター測定に関して はSzymon Lis氏(Wroclaw University of Technology、ポーラン ド)に、ガラスキャピラリー管の作製に関してはMayuree Chanasakulniyom氏(Glasgow大学、英国)に感謝いたします。

References

(1) Dylewicz, R.; Lis, S.; De La Rue, R. M.; Rahman, F. *Electron. Lett.* **2010**, *46*, 1025.
 (2) Dylewicz, R.; Lis, S.; De La Rue, R. M.; Rahman, F. *J. Vac. Sci. Technol. B* **2010**, *28*, 817.
 (3) Klauke, N.; Smith, G. L.; Cooper, J. M. *Anal. Chem.* **2007**, *79*, 1205.
 (4) Leslie S. A; Mitchell J. C. *Palaeontology* **2007**, *50*, 1459.

導電性高分子

導電性高分子材料の最新情報はwww.sigma-aldrich.com/organicelectronics-jp をご覧ください。

PEDOT Polymers

Name	Conductivity	Composition	Properties	Prod No
Poly(3,4-ethylenedioxythiophene)-poly (styrenesulfonate), PEDOT:PSS	~ 1E-5 S/cm	PEDOT content ~ 0.14% PSS content ~ 2.6%	2.8 wt % dispersion in H_2O	560596-25G 560596-100G
	1 S/cm	PEDOT content 0.5 wt. % PSS content 0.8 wt. %	1.3 wt % dispersion in $\rm H_2O$	483095-250G
Poly(3,4-ethylenedioxythiophene), tetramethacrylate end-capped solution, PEDOT*	0.1-0.5 S/cm (bulk conductivity)	p-toluenesulfonate as dopant Oligotron™ tetramethacrylate 0.5 wt. % propylene carbonate 99.5 wt. %	average M _n ~6,000 ~1,360-1,600 g/mol (methacrylate equivalent weight), 0.5 wt. % (dispersion in propylene carbonate)	649813-25G
	0.1-0.5 S/cm (bulk conductivity)	p-toluenesulfonate as dopant Oligotron tetramethacrylate 0.5 wt. % ethanol 5.8 wt. % isopropanol 0.3 wt. % nitromethane 93.4 wt. %	average $M_n \sim 6,000$ $\sim 1,360-1,600$ g/mol (methacrylate equivalent weight), 0.5 wt. % (dispersion in nitromethane)	649821-25G
Poly(3,4-ethylenedioxythiophene), bis-poly(ethyleneglycol), lauryl terminated, PEDOT:PEG*	10-60 S/cm	Aedotron - C3 polymer 0.2-0.7 wt. % acetonitrile 4-8 wt. % nitromethane 90-95 wt. % propylene glycol 0.0-0.3 wt. %	0.4-0.9 wt. % (content of dispersion)	687316-25G
Poly(3,4-ethylenedioxythiophene)- block-poly(ethylene glycol) solution, PEDOTPEG*	0.5-3 S/cm (bulk)	perchlorate as dopant Aedotron C-NM polymer 1 wt.%	1 wt % dispersion in nitromethane	649805-25G

*Products of TDA Research, Inc.

Polythiophenes

Name	Structure	Electronic Properties	Form	Prod. No.
Poly(3-octylthiophene-2,5-diyl-co-3-decyl- oxythiophene-2,5-diyl), POT-co-DOT	$\begin{array}{c} & \overset{CH_2(CH_2)_{\theta}CH_3}{\overset{O}{\longrightarrow}} \\ & \overset{O}{\longrightarrow} \\ & \overset{O}{\longrightarrow}$	-	powder	696897-250MG
Poly(thiophene-3-[2-(2-methoxyethoxy) ethoxy]-2,5-diyl), sulfonated solution*	HO-S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	resistivity 500-3,000 Ω -cm work function –5.1- –5.2 eV	liquid, 2% in ethylene glycol monobutyl ether/water, 3:2	699780-25ML
Poly(thiophene-3-[2-(2-methoxyethoxy) ethoxy]-2,5-diyl), sulfonated solution*	T's , Ty O OCH3	resistivity 25-250 Ω -cm work function –5.1- –5.2 eV	liquid, 2% in 1,2-propane- diol/isopropanol/water, 3:2:1	699799-25ML
Poly(3-octylthiophene-2,5-diyl), regioregular, P3OT	$\left(\begin{array}{c} CH_2(CH_2)_0CH_3 \\ \\ S \end{array} \right)_n$	-	solid	682799-250MG
Poly(3-hexylthiophene-2,5-diyl), >98% head-to-tail regioregular (HNMR) regioregular, P3HT*	CH ₂ (CH ₂) ₄ CH ₃	-	solid	698997-250MG 698997-1G 698997-5G
Poly(3-hexylthiophene-2,5-diyl), >95% head-to-tail regioregular (HNMR) regioregular, P3HT*	[-	solid	698989-250MG 698989-1G 698989-5G
Poly(3-dodecylthiophene-2,5-diyl), regioregular, P3DDT	CH2(CH2)10CH3	-	solid	682780-250MG

*Product of Plextronics, Inc.

Polypyrrole

Name	Structure	Conductivity	Form	Prod. No.
Polypyrrole doped, PPy	• X organic acid anion	> 0.0005 S/cm (dried cast film)	5 wt % dispersion in $\rm H_2O$	482552-100ML
Polypyrrole, coated on titanium dioxide doped, PPy	L N J _n H ₂	0.5-1.5 S/cm (pressed pellet, typical)	solid	578177-10G
Polypyrrole, PPy		10-40 S/cm	solid	577030-5G 577030-25G
Polypyrrole, composite with carbon black doped, PPy		30 S/cm (bulk)	solid	530573-25G
Polypyrrole, composite with carbon black undoped, PPy		~ 8.5 S/cm	solid	577065-10G

Polyaniline

Name	Structure	Conductivity	Form	Prod. No.
Polyaniline (emeraldine salt), PANI		2-4 S/cm (compacted pow- der)	powder (Infusible)	428329-5G 428329-25G
Polyaniline (emeraldine salt), composite (30 wt.% polyaniline on nylon), PANI		~ 0.5 S/cm	solid	577073-10G
Polyaniline (emeraldine salt), composite (20 wt.% polyaniline on carbon black), PANI	L J _n	30 S/cm (bulk, typical)	powder	530565-5G 530565-25G
Polyaniline (emeraldine salt), PANI		10-20 S/cm (film)	liquid, 2-5 wt. % (dispersion in xylene)	650013-10ML 650013-50ML
Polyaniline (emeraldine salt), PANI		~ 1 S/cm (film)	liquid, 0.5 wt. % (dispersion in mixed solvents)	649996-10ML

自己組織化単分子層のマイクロおよび ナノスケールフォトパターニング

Graham J. Leggett Department of Chemistry, University of Sheffield, Brook Hill, Sheffield S3 7HF, United Kingdom *Email: Graham.Leggett@shef.ac.uk

はじめに

自己組織化単分子層(SAM: self-assembled monolayer)を用い た、マイクロおよびナノテクノロジーでの幅広い応用に関して非 常に大きな関心が集まっています。本論文では、SAMに関する3 種類の系(アルキルチオラート-金、アルキルシラン-二酸化シリ コン、およびアルキルホスホン酸-酸化物)の特徴を比較し、さら に、フォトパターニングを用いた、数ミクロンから平方センチの 領域への10 nm 程度の構造の作製方法について解説します。現 在、自己組織化単分子層1-3は、ナノ科学に関する多くの分野では 欠くことのできない手法になっています。SAMは、Langmuir-Blodgett(LB)膜と同様に、固体表面に吸着分子が高密度に充填さ れた、規則性を持つ層からなる構造を持っています。しかし、LB 膜とは異なり、吸着化合物の希薄溶液に基板を浸漬するという簡 便な方法によって堆積させます。この単分子層形成プロセスは、 吸着分子と基板の間に強力かつ特異的な相互作用ができることに よって促進され、さらに、分子間の相互作用によって安定性が著 しく向上し、規則的配列の形成が進みます。「自己組織化単分子 層」という用語は有機化合物が吸着した系すべてを指す広い意味 に使われることが多いのですが、厳密に言えば、SAMは(a) 固体 表面に吸着した両親媒性分子の単分子層、(b)吸着分子と基板と の間の強い相互作用(通常は化学吸着)、(c)高密度充填、(d)(通 常は)高度な規則性、という特徴を持っています。

アルキルチオラートSAM

金表面におけるアルキルチオラートSAMは、適切な基板上の金薄 膜を特定の吸着化合物の希薄エタノール溶液(1 mM)に浸漬する ことで得られます。Au-S間の相互作用が強く、吸着分子間のス ペース(4.99 Å)とアルキル鎖のファンデルワールス直径(4.5 Å) の値が近いため、金-アルキルチオラートSAMは化学安定性に優 れ、高い規則性(5~10 nmの領域で実質的に結晶質)を示しま す。アルキルチオラートはその他のさまざまな金属(Aq、Cu、およ びPdが幅広く研究されています)やいくつかの半導体(GaAsな ど)の上でもSAMを形成します。

アルキルチオラートSAMを用いる上で、その熱安定性と酸化安定 性がそれほど高くないために、いくつかの制約が生じます。アル キルチオラートは室温からあまり高くない温度で表面から脱離す るため、多くの種類の溶液相プロセスが困難になるとともに、お そらく大気中のオゾン(S-Au結合を攻撃する)によると考えられ る酸化を非常に受けやすくなります。生物学的応用の場合、部分

的な酸化分解によって引き起こされた低密度の欠陥によって性能 が著しく低下することがあります。さらには、基板に金を使う必 要があることも制限の一つとなります。例えば、金には蛍光消光 性があり、吸着した生体分子の光学的分析が必要な場合に問題と なる場合があります。

アルキルチオラートSAMのパターニングで最も広く使われてい るのがマイクロコンタクト印刷(µCP)⁴であり、従来のマイクロ 製造法の安価な代替法として Whitesides らによって初めて開発 された方法です。µCPでは、チオール溶液を塗布したPDMS (polydimethylsiloxane)スタンプを金基板上に置き、チオールの 転写を行います。最初のステップでコーティングされなかった領 域は、溶液相による堆積プロセスで、第2のチオール化合物に よって官能基化されます。µCPが広く使用されている理由は、サ ブミクロンの長さスケールで単分子層を素早く、安価に、かつ極 めて効果的にパターニングできるためです。一方、ナノスケール では、ディップペンナノリソグラフィ (DPN: dip-pen nanolithography)⁵がµCPに類似した方法です。原子間力顕微鏡 (AFM: atomic force microscope)チップに適切なチオール溶液 を塗布し、表面をなぞって微細形状を作製します。DPNではアル キルチオラートインクを用いることで100 nmよりはるかに高い 分解能が得られ、並列書き込みデバイス。などの高度な応用例が 多数報告されています。

そのほかの方法には、マスクを通したUV光の露光によるアルキ ルチオラートSAMのフォトパターニング(図1a)⁷があります。吸

図1 a) 金表面上におけるアルキルチオラートSAMのフォトパターニング を示す概略図。b) 走査近接場フォトリソグラフィでは、近接場プローブを 用いて9 nm(約λ/30)程度の分解能で露光します。

σ

0

-U

σ s i

着化合物はこの方法で光酸化されてスルホン酸化合物になります が、弱い吸着のため、単純な溶液相プロセスでの置換が可能な場 合があります。この方法の利点は、最初に形成されるSAMが極め て高い規則性を示すことです。SAMの光酸化を引き起こすホット エレクトロンの形成を開始させるには、約250 nmの照射が必要 です。多くの水銀ランプはこの波長で発光しますが、発光スペク トルは光源の種類に強く依存します。最良の方法は、UVレーザー (frequency-doubled argon ion laserなど)を使用することです。 ナノスケールでは、走査近接場光学顕微鏡をUVレーザーと組み 合わせてSAMの露光を行うことも可能です(図1b)⁸。SAMの完 全な光酸化には約1~4Jcm⁻²の露光が必要であり、末端基の種 類と鎖長によって決まります。その後、光酸化した吸着化合物は 液相プロセスで置換されることがあります。走査近接場フォトリ ソグラフィと呼ばれるこの方法によって、9 nm 程度の微細構造 を作製できる可能性があります⁹。

アルキルシランSAM

アルコキシシランと三塩化シランはシリカ表面のシラノール基と 反応して強く結合し、極めて高い酸化安定性と熱安定性を持つ膜 を作ります。この系での最大の課題は、吸着分子同士の重合制御 です。一般に、この重合は、シランが通常溶ける有機溶媒中に水分 が過剰にあると進み、重合によって、粗い、球状の堆積物が形成さ れます。多くの場合、シランによる膜は単分子層より厚く、アルキ ルチオラートSAMより規則性が低くなります。また、多くの用途 においてガラスの熱安定性と酸化安定性の高さ、および機能化特 性は魅力的であり、より複雑な作製工程が可能です。ナノメート ルスケールでは、Sagivらがプローブに電圧を印加したAFMを用 いてアルキルシランSAMを選択的に酸化し、異なる吸着分子で再 官能基化することで、複雑な分子構造を容易に構築できることを 示しました¹⁰。

アルキルホスホン酸SAM

酸化物表面は多くの応用で重要です。例えば、色素増感太陽電池 では、ナノ構造化したTi酸化物を用いて界面を最適化し、色素か ら半導体への電子移動を最大化します¹¹。アルキルホスホン酸 (APA:alkylphosphonic acid)はアルミニウム、チタン、およびそ の他の金属の酸化物上に強く吸着してSAMを形成します。この SAMはアルキルチオラート単分子層の場合より密に充填し、より 高い酸化安定性と熱安定性を示します。APA-SAMは、長時間の大 気暴露にも安定しています。分解が大きな課題になるのは、水性 環境に長時間暴露された場合のみです。

アルミニウム酸化物表面における SAM

この単分子層は、適切な溶媒(エタノールなど)のAPA希薄溶液に 基板を浸漬する、単純な溶液相堆積プロセスで形成されます。基 板は通常AIをスパッタもしくは蒸着し、大気環境に20~40分暴 露して、表面を水酸化させなければなりません。SAM形成中、APA のhead部分は脱プロトン化されると考えられており、酸化物表 面と強く相互作用します。各head部分の間のスペースは、アルキ ルチオラートSAMの場合よりわずかに狭い4.8 Åです。振動分光 法から「ゴーシュ(gauche)」欠陥の数は極めて少ないことが分か りますが、これは吸着分子が高度に規則化した全トランス型配置 であることを示します。アルキルホスホン酸SAMは多くの応用で の利用が非常に期待されていますが、おそらく SAMの中で最も利用が遅れている系です。

図2a)酸化アルミニウム上のoctadecylphosphonic acid (Aldrich 製品 番号715166) SAMに、フォトリソグラフィで作製した aminobutylphosphonic acid (Sigma 製品番号 A0664) 正方形パターン。 メチル末端であるオクタデシルホスホン酸 SAMにマスクを通して露光し た後、サンプルをアミン末端であるアミノブチルホスホン酸の溶液に浸漬 し、露光した領域を再官能基化しました。b) a) と同様に作製したサンプル にアルデヒド官能基化ポリマーナノ粒子を固定化した後の写真。c)~e) UV 露光後、水酸化ナトリウムでエッチングしてフォトパターニングしたオ クタデシルホスホン酸 SAM。(各サンプルの露光量(J cm⁻²) (a) 10, (b) 10, (c) 2, (d) 20, (e) 40。)

アルキルチオラートSAMと比較すると、APA単分子層のパターニ ングに関する研究はほんのわずかしかありませんが、そのフォト パターニングは単純な方法です¹²。約250 nmの波長を持つUV光 の露光によって吸着分子のP-C結合が切断され、アルキル基が脱 離します。ホスホン酸基は表面に残存すると考えられますが、別 の異なる APA によって露光箇所を再官能基化する妨げにはなり ません。その結果、異なる化学組成を持つパターニングを行うこ とができます。図2aに、フォトリソグラフィで作製したAPA-SAM パターンの写真を示します。Octadecylphosphonic acid (ODPA、Aldrich 製品番号715166) 単分子層にマスクを通して UV光を露光した後、マスクを取り除き、サンプルを aminobutylphosphonic acid(ABPA、Sigma製品番号A0664) 水溶液に浸漬しました。サンプルの画像化は、摩擦力顕微鏡法 (FFM: friction force microscopy)で行いました。これは原子間 力顕微鏡法の一種で、表面摩擦によるカンチレバーの横方向のた わみ(lateral deflection)を測定する方法であり、親水領域は明る いコントラスト(摩擦力が大きい)で示されます。図2bには、前述 と同様の方法で作製したサンプルに、アルデヒド官能基化ポリ マーナノ粒子をイミン結合の形成によって固定化させた後の画像 を示しました。このように、酸化物表面でより複雑な分子構造を 構築するための簡便で効果的な方法であることが分かります。

別の方法として、UV 露光後、パターン化した ODPA 層をレジスト として使用し、下層の AI 膜に構造をエッチングすることも可能で す。図2cに、244 nm 照射で2 J cm⁻²まで露光したサンプルを示 します。水酸化ナトリウム水溶液に浸漬すると、露光された領域 (正方形)がエッチングされて元の吸着分子で被覆されている未露 光の領域がそのまま残ります。APA-SAM は「切り替え可能なレジ スト」として振る舞い、UV 露光を増やすと徐々に挙動が変化し (おそらく、露光した領域の酸化物が再形成されるため)、40 J cm⁻²(図2e)の露光で、パターン化した SAM はネガ型レジストと して効率的に働き、露光時にマスクした領域が最も速くエッチン グされるようになります。また、APA-SAM を近接場プローブで露

図3 AIエッチングに対するレジストとして SNP でパターン化したホスホン 酸単分子層を用いて作製したナノ構造の、タッピングモードAFM画像。

酸化チタン表面のSAM

チタニアは、UV光を吸収することで酸化物表面にて電子と正孔 のペアを生成し、有機物を酸化分解するという、よく知られた光 触媒特性を有しています。この特性を利用して、Ti上の APA に高 速フォトパターニングを行うことができます13。図4に、チタニア 上のさまざまな SAM およびアルミナ上の decyl phosphonic acid(DPA)単分子層における、接触角のデータを示します。UV露 光後、アルキル鎖の分解によって下地の極性酸化物の表面が露出 し、接触角が減少します。この減少の割合は、明らかにチタニア上 の方がはるかに速く、最も長い吸着分子であるODPAでさえ、ア ルミナ上のDPA-SAMよりはるかに速く分解します。チタニア上 ではアルミナ上より長波長を使うことも可能であり、フォトンエ ネルギーがチタニアのバンドギャップより大きな場合、酸化が起 こります。アルミナ上ではC-P結合の切断がプロセスの最初のス テップであるため、より短い波長が必要です。

図4水への浸漬時間に対する、チタンの自然酸化膜上のオクチル-(OPA)、 デシル-(DPA)、オクタデシル-ホスホン酸(ODPA)-SAMおよびアルミナ上 のDPA-SAMの接触角の変化。

図5aに、マスクを通してUV露光した後のODPA-SAMのFFM像 を示します。露光した領域(正方形)は、下地の基板が露出し、摩擦 係数が増加することで表面の自由エネルギーが局所的に大きくな るため、明るいコントラストを示しています。図5bは、近接場プ

ローブを光源としたUVによる分解によって作製したパターンで す。図5cの光学顕微鏡写真では、チタニア上のパターン化SAMの 官能基化を示しました。この写真は、フォトパターニングで露光 した酸化物の領域に吸着させたABPAと、これにアルデヒドで官 能基化した色素含有ポリマーナノ粒子を組み合わせたときに発光 する蛍光を捉えたものです。最後に、図5dには、ODPA-SAMを露 光後、水酸化カリウム中で液相エッチングを行ってパターン化し たサンプルを示しました。さらに、露光量に応じて切り替わる同 様の特性が、Ti上のSAMで報告されており、その性質はエッチン グ溶液の種類にも依存します。たとえば、図5dに示すものとまっ たく同様に作製したサンプルでも、ピラニア溶液でエッチングす ると、逆コントラスト(つまり、ここで示した図5dのネガ型とは 反対にポジ型の特性)を示します。

図5 a) チタンの自然酸化膜上のODPA-SAMをマスク(600 mesh)付きで 50 mW、2分間(7.5 J cm⁻²)露光した後のFFM像。zスケールレンジ:0~ 517 mV。b) 走査型近接場フォトリソグラフィを用いて、酸化チタン上の ODPA単分子層中に作製したパターンのFFM像: ァスケールレンジ:0~ 1.00V。c) (a)と同様の試料の露出した領域をABPAで官能基化した後、蛍 光染料を含むアルデヒド官能基化ポリマーナノ粒子を固定化したサンプル の蛍光顕微鏡写真。d) ODPA-SAMを露光後に水酸化ナトリウムでエッチ ングしたサンプル。

結論

ナノ科学の領域における、アルキルホスホン酸の自己組織化単分 子層の利用はまだこれからです。この単分子層は、極めて優れた 酸化安定性を有し、フォトリソグラフィによって容易にパターン 化することができます。光分解した吸着分子の単純な交換や、パ ターン化した単分子層の湿式エッチングなどの方法を用いた、さ まざまな官能基化を行うことが可能です。チタニア上での光触媒 反応によるSAMの分解を利用することで、幅広い波長域において SAMの高速パターニングを行うことができます。

References

- (1) Netzer, L.; Sagiv, J. J. Am. Chem. Soc. 1983, 105, 674.
- (2) Nuzzo, R. G.; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
- (3) Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem, Rev. 2005.105.1103.
- (4) Xia, Y.; Whitesides, G. M. Angew. Chem. Int. Ed. 1998, 37, 550.
- (5) Piner, R. D.; Zhu, J.; Xu, F.; Hong, S.; Mirkin, C. A. Science 1999, 283, 661.
- (6) Salaita, K.; Wang, Y.; Fragala, J.; Vega, R. A.; Liu, C.; Mirkin, C. A. Angew. Chem. Int. Ed. 2006 45 7220
- (7)Leggett, G. J. Chem. Soc. Rev. 2006, 35, 1150.
- (8) Sun, S.; Chong, K. S. L.; Leggett, G. J. J. Am Chem. Soc. 2002, 124, 2414.
- (9) Montague, M.; Ducker, R. E.; Chong, K. S. L.; Manning, R. J.; Rutten, F. J. M.; Davies, M. C.; Leggett, G. J. Langmuir 2007, 23, 7328.
- (10) Maoz, R.; Cohen, S. R.; Sagiv, J. Adv. Mater. 1999, 11, 55.
- (11) O'Regan, B.; Gratzel, M. Nature 1991, 353, 737.
- (12) Sun, S.; Leggett, G. J. Nano Lett. 2007, 7, 3753.
- (13) Tizazu, G.; Adawi, A.; Leggett, G. J.; Lidzey, D. G. Langmuir 2009, 25, 10746.

26

9

σ

Ε

0

-

ma-aldric

sign

自己組織化材料

Phosphonic Acids

Name	Structure	Purity	Prod. No.
Octylphosphonic acid, <i>n</i> -Octylphos- phonic acid, OPA	О СН ₃ (СН ₂) ₈ СН ₂ -Р ⁻ -ОН О́Н	97%	735914-1G 735914-5G
Tetradecylphosphonic acid, TDPA	О СН ₃ (СН ₂) ₁₂ СН ₂ ^[†] -ОН О́Н	97%	736414-1G 736414-5G
Hexadecylphosphonic acid, HDPA	О СН ₃ (СН ₂)1 ₁₄ СН ₂ – Р – ОН ОН	97%	736244-1G 736244-5G
Octadecylphosphonic acid, ODPA	СН ₃ (СН ₂) ₁₆ СН ₂ -Р-ОН ОН	97%	715166-1G
1,8-Octanediphosphonic acid	0 НО-Р-СН ₂ (СН ₂) ₆ СН ₂ -Р-Он ОН ОН	97%	699888-1G
1,10-Decyldiphosphonic acid	о но- ^{-р} -сн ₂ (сн ₂) ₈ сн ₂ - ^р -он он он	97%	737410-1G
(12-Phosphonododecyl)phosphonic acid	о нор-сн ₂ (сн ₂₎₁₀ сн ₂ -р-он он он	97%	685437-1G
6-Phosphonohexanoic acid, PHA	но-р	97%	693839-1G
11-Phosphonoundecanoic acid	о но-Р-Сн₂(Сн₂)₀Сн₂ , он о́н	96%	678031-1G
16-Phosphonohexadecanoic acid	о но-Р-сн ₂ (Сн ₂) ₁₃ Сн ₂ —он он	97%	685801-1G
4-Aminobutylphosphonic acid	Ч H₂NCH₂CH₂CH₂CH₂−Р−ОН о́н	≥99%	A0664-250MG
11-Mercaptoundecylphosphoric acid	о нscн ₂ (сн ₂₎₆ сн ₂ о- ^д -он он	95%	674311-50MG

Thiols

Name	Structure	Purity	Prod. No.
1-Propanethiol, 1-PT	CH ₃ CH ₂ CH ₂ SH	99%	P50757-100ML P50757-500ML P50757-2L
1-Butanethiol, BT	H ₃ C ^{SH}	99%	112925-250ML 112925-1L
1-Pentanethiol, PT	CH ₃ (CH ₂) ₃ CH ₂ SH	98%	P7908-25G-A P7908-100G-A
1-Hexanethiol, HT	CH ₃ (CH ₂₎₄ CH ₂ SH	95%	234192-5ML 234192-100ML 234192-500ML
1-Heptanethiol, HT	CH ₃ (CH ₂) ₅ CH ₂ SH	98%	H4506-25G-A
1-Octanethiol, OT	CH ₃ (CH ₂₎₆ CH ₂ SH	≥98.5%	471836-25ML 471836-250ML 471836-2L
1-Nonanethiol, NT	CH ₃ (CH ₂) ₇ CH ₂ SH	99%	674273-250MG
1-Decanethiol, DT	CH ₃ (CH ₂) ₈ CH ₂ SH	99%	705233-1G
1-Undecanethiol, UT	CH ₃ (CH ₂) ₉ CH ₂ SH	98%	510467-5G

News	Churchen	D 11	Dual Na
Name 1-Dodecanethiol, DDT	Structure CH ₃ (CH ₂₎₁₀ CH ₂ SH	Purity ≥98%	Prod. No. 471364-100ML 471364-500ML 471364-2L 471364-18L
1-Tetradecanethiol, TDT	CH ₃ (CH ₂) ₁₂ CH ₂ SH	≥98.0%, GC	87193-5ML 87193-25ML
1-Pentadecanethiol, PDT	CH ₃ (CH ₂) ₁₃ CH ₂ SH	98%	516295-1G
1-Hexadecanethiol, HDT	CH ₃ (CH ₂) ₁₄ CH ₂ SH	99%	674516-500MG
1-Octadecanethiol, ODT	CH ₃ (CH ₂) ₁₆ CH ₂ SH	98%	O1858-25ML O1858-100ML
4-Mercapto-1-butanol, MB, MCB	HSOH	95%	451878-1G 451878-5G
6-Mercapto-1-hexanol, MH	SHCH ₂ (CH ₂) ₄ CH ₂ OH	97%	451088-5ML 451088-25ML
8-Mercapto-1-octanol, MO	HSCH ₂ (CH ₂) ₆ CH ₂ OH	98%	706922-1G
11-Mercapto-1-undecanol, MUD	HSCH ₂ (CH ₂) ₉ CH ₂ OH	99%	674249-250MG
11-Amino-1-undecanethiol hydro- chloride, AUT	HSCH ₂ (CH ₂) ₉ CH ₂ NH ₂ · HCl	99%	674397-50MG
6-Mercaptohexanoic acid, MHA	HS,U	90%	674974-1G
8-Mercaptooctanoic acid, MOA	HSCH ₂ (CH ₂) ₅ CH ₂ OH	95%	675075-1G
11-Mercaptoundecanoic acid, MUDA	HSCH ₂ (CH ₂₎₈ CH ₂ OH	99%	674427-500MG
12-Mercaptododecanoic acid, MDA	HSCH ₂ (CH ₂) ₉ CH ₂ OH	99%	705241-250MG 705241-500MG
16-Mercaptohexadecanoic acid, MHDA	о HSCH ₂ (CH ₂) ₁₃ CH ₂ ОН	99%	674435-250MG
12-Mercaptododecanoic acid NHS ester	HSCH ₂ (CH ₂) ₉ CH ₂ U	97%	723061-500MG
Triethylene glycol mono-11-mercap- toundecyl ether	HSCH ₂ (CH ₂) ₉ CH ₂ O	95%	673110-250MG
(11-Mercaptoundecyl)tetra(ethylene glycol), MUTEG	HSCH ₂ (CH ₂) ₉ CH ₂ O ⁰ ⁰ ⁰ ⁰	95%	674508-250MG
(11-Mercaptoundecyl)hexa(ethylene glycol), MUHEG	HO - OLIS OCH2(CH2)9CH2SH	95%	675105-250MG
Cyclohexanethiol, CHT	SH	97%	C105600-25G C105600-100G
1-Adamantanethiol, ADT	SH	99%, GC	719234-500MG
2-Phenylethanethiol, PET	SH	98%	252581-10G
1-Naphthalenethiol, NT	SH	99%	724742-5G
1,1',4',1"-Terphenyl-4-thiol, TPT	SH	97%	708488-500MG
6-(Ferrocenyl)hexanethiol, FHT	SH Fe	-	682527-250MG
11-(1 <i>H</i> -pyrrol-1-yl)undecane-1-thiol, PUT	N CH₂(CH₂)₀CH₂SH	96%	717223-1G
1-(11-Mercaptoundecyl)imidazole, MUI	$\bigcup_{\substack{N\\CH_2(CH_2)_{0}CH_2SH}}^{N}$	96%	723088-500MG

Name	Structure	Purity	Prod. No.
11-Mercaptoundecylhydroquinone, MUH	HO CH ₂ (CH ₂) ₂ CH ₂ SH	95%	728640-500MG
1,4-Benzenedimethanethiol, BDT	HS	98%	147273-250MG 147273-1G
Biphenyl-4,4'-dithiol, BPDT	нѕ<_>-ян	95%	673099-1G
4,4'-Bis(mercaptomethyl)biphenyl, MMB	HS SH	97%	716049-1G
4,4'-Dimercaptostilbene	HS	>96%	701696-100MG
<i>p</i> -Terphenyl-4,4"-dithiol, TPDT	нѕ{_}-{_}-ян	96%	704709-1G

ナノインプリント用高分子材料

PMMA-based Resins

Name	Structure	Molecular Weight	Prod. No.
Poly(methyl methacrylate), PMMA	CH ₃	average $M_{\rm w} \sim \! 15{,}000$ by GPC	200336-50G 200336-100G
Poly(methyl methacrylate), PMMA		average M_n 46,000 (Typical) average M_w 97,000 (Typical)	370037-25G
Poly(methyl methacrylate), PMMA		average $\rm M_w$ ~120,000 by GPC	182230-25G 182230-500G 182230-1KG
Poly(methyl methacrylate), PMMA	-	average $M_{\rm w}$ ~350,000 by GPC	445746-25G 445746-500G 445746-1KG
Poly(methyl methacrylate), PMMA		average $M_{\rm w}$ ~996,000 by GPC	182265-25G 182265-500G 182265-1KG
Poly(methyl methacrylate), isotactic, PMMA		-	452130-1G
Poly(ethyl methacrylate), PEMA	[0 0]	average M _n 126,000 (Typical) average M _w 340,000 (Typical)	183350-25G
Poly(ethyl methacrylate), PEMA	- CH ₃ n	average $\rm M_w$ ~515,000 by GPC	182087-5G 182087-250G
Poly(butyl methacrylate), PBMA		average $\rm M_{w}$ ~337,000 by GPC	181528-5G 181528-250G
Poly(isobutyl methacrylate), PiBMA	CH ₃	average $M_{w} \sim$ 70,000	181544-50G 181544-250G
Poly(isobutyl methacrylate), PiBMA		average M _w ~130,000	445754-50G
Poly(isobutyl methacrylate), PiBMA	CH ₃ n	average M_n 140,000 (Typical) average M_w 300,000 (Typical)	181552-25G
Poly(hexyl methacrylate) solution, PHMA	$\begin{array}{c} O & OCH_2(CH_2)_4CH_3 \\ \hline \\ CH_3 \\ n \end{array}$	average $M_{\rm w}$ ~400,000 by GPC	182125-25G
Poly(2-ethylhexyl methacrylate) solution, PEHMA	$\begin{array}{c} CH_3\\ CH_3\\ f\\ CH_3\\ n\end{array} CH_3 \end{array}$	average $M_{\rm w}$ ~123,000 by GPC	182079-50G
Poly(lauryl methacrylate) solution, PLMA	$ \begin{array}{c} $	average M_n 150,000 (Typical) average M_w 470,000 (Typical)	182192-5G

Name	Structure	Molecular Weight	Prod. No.
Poly(2-hydroxyethyl methacrylate), PHEMA	о от он	average $M_v \sim 20,000$	529265-5G 529265-25G
Poly(2-hydroxyethyl methacrylate), PHEMA	[CH ₃] _n	average $M_v \sim 300,000$	192066-10G 192066-25G
Poly(2-hydroxyethyl methacrylate), PHEMA		average $M_v \sim 1,000,000$	529257-1G 529257-10G
Poly(2-hydroxypropyl methacrylate), PHPMA		-	182133-10G
Poly(cyclohexyl methacrylate), PCMA		average $M_{\rm w}$ ~65,000 by GPC	191949-25G
Poly(benzyl methacrylate), PBMA		average $M_{\rm w} \sim 70,000$ by GPC	181358-10G
Poly(methyl methacrylate-co-ethyl acrylate), PMMA-co-EA	$\begin{bmatrix} CH_3 \\ O \\ CH_3 \\ CH_3 \end{bmatrix}_m \begin{bmatrix} O \\ O \\ CH_3 \\ CH_3 \end{bmatrix}_n$	average $M_{\rm n}$ ${\sim}39{,}500$ by GPC average $M_{\rm w}$ ${\sim}101{,}000$ by GPC	182249-25G 182249-1KG
Poly(methyl methacrylate-co-methacrylic acid), PMMA-co-MA	$ \begin{bmatrix} CH_3 \\ O \\ CH_3 \end{bmatrix}_m \begin{bmatrix} CH_3 \\ HO \\ O \\ $	average M_n ~15,000 by GPC average M_{w} ~34,000 by GPC	376914-25G 376914-500G 376914-1KG
Poly(butyl methacrylate-co-methyl methacrylate), PBMA-co-MMA	H_3C O O OCH_3 $H_3 I_n$ $H_3 I_n$	average $M_w \sim 150,000$	474037-250G
Poly(methyl methacrylate- <i>co</i> -ethylene glycol dimethacrylate), 50µm particle size		-	463183-500G
Poly(methyl methacrylate-co-ethylene glycol dimethacrylate), 8µm particle size	$\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\$	-	463167-500G
Poly(styrene- <i>co</i> -methyl methacrylate), PS- <i>co</i> -MMA		average M _w 100,000-150,000	462896-250G
Poly(4-vinylphenol-co-methyl methacrylate), PVP-co-PMMA			474576-50G
Poly(4-vinylpyridine-co-butyl methacrylate)		•	306258-50G
Poly(ethylene-co-glycidyl methacrylate)		-	430862-250G
Poly(1-vinylpyrrolidone- <i>co</i> -2-dimethylaminoethyl methacrylate) solution		average $M_{\rm w}$ ~1,000,000 by GPC	434469-250ML
Poly[(2-ethyldimethylammonioethyl methacrylate ethyl sulfate)-co-(1-vinylpyrrolidone)]	$ \begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & $	average $M_{\rm w}$ <1,000,000 by GPC	190888-250G

PDMS-based Resins

Name	Structure	Molecular Weight	Prod. No.
Kit for Creating Hydrophilic PDMS Surface		-	701912-1KT
Polycarbomethylsilane, PCMS	CH3 H n	average M _w ~800	522589-25G
Poly(dimethylsiloxane), hydroxy terminated, PDMS	но-si-o-н	-	481955-100ML 481955-500ML
Poly(dimethylsiloxane), hydroxy terminated, PDMS	L J _n CH ₃	-	481963-100ML 481963-500ML
Poly(dimethylsiloxane), hydride terminated, PDMS	$\begin{array}{c} \overset{CH_0}{\underset{CH_3}{\overset{FH_3}{\underset{CH_3}{\overset{H_3}{\underset{CH_3}{\overset{H_3}{\overset{H_3}}}}}}, \overset{CH_3}{\underset{CH_3}{\overset{H_3}{\overset{H_3}}}}$	average M _n ~580	423785-50ML 423785-250ML
Poly(methylhydrosiloxane), trimethylsilyl terminated, PDMS	H ₃ C-Si-O+Si-O+Si-CH ₃	average $M_n \sim 390$	482382-20ML
Poly(methylhydrosiloxane), PMHS	ĊH₃ ́H ^J лĊH₃	average M _n 1,700-3,200	176206-50G 176206-250G
Poly(dimethylsiloxane-co-methylhydrosiloxane), trimethylsilyl terminated	$H_{3}C$ $ Si$ $ O$ $+$ Si $-$	average $M_n \sim 950$	482196-50ML
Poly(dimethylsiloxane- <i>co</i> -methylhydrosiloxane), trimethylsilyl terminated		average M _n ~13,000	482374-25ML 482374-150ML
Poly(dimethylsiloxane), vinyl terminated, PDMS	$\underset{\substack{H_2C}{\overset{\displaystyle \left(\prod_{i=0}^{CH_3} \right) \xrightarrow{CH_3} \\ CH_3 \\ CH_3 \\ \end{array}}} \overset{CH_3}{\underset{n \in CH_3}{\overset{CH_3}}} \overset{CH_2}{\underset{n \in CH_3}{\overset{CH_2}}}$	average $M_w \sim 25,000$	433012-100ML 433012-500ML
Poly(dimethylsiloxane), bis(hydroxyalkyl) terminated, PDMS	$\begin{array}{c} {}^{CH_3} \xrightarrow{{}^{CH_3}}_{m = 0} \xrightarrow{{}^{OH_3}}_{m = 0} \xrightarrow{{}^{OH$	average M _n ~5,600	481246-25ML 481246-100ML
Poly(dimethylsiloxane), bis(3-aminopropyl) terminated, PDMS	H_2N H_3 H_2 H_3	average $M_n \sim 2,500$	481688-10ML 481688-50ML
Poly(dimethylsiloxane), bis(3-aminopropyl) terminated, PDMS	ĊH ₃ ^L _{CH₃} ^J n ĊH ₃	average $M_n \sim 27,000$	481696-50ML
Poly(dimethylsiloxane), diglycidyl ether terminated, PDMS	$\begin{array}{c} \begin{array}{c} c_{H_3} \left[c_{H_3} \right] \\ s_{I^{-}O} \\ c_{H_3} \left[c_{H_3} \right]_n \\ c_{H_3} \left[c_{H_3} \right]_n \\ c_{H_3} \\ c_{H_3} \right]_n \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} c_{H_3} \\ c_$	M _n ~800	480282-50ML 480282-250ML
Poly(dimethylsiloxane), monoglycidyl ether terminated, PDMS	$\underset{\substack{H_{3}C-\overset{C}{s}i=0\\CH_{3}}{\overset{C}{t}}\underset{\substack{I=0\\CH_{3}}{\overset{C}{t}}\underset{\substack{I=0\\CH_{3}}{\overset{C}{t}}\underset{n}{\overset{C}{t}}\underset{n}{\overset{C}{s}}\underset{n}{\overset{C}{t}}\underset{n}{\overset{C}{s}}\underset{n}{\overset{C}{t}}\underset{n}{\overset{C}{s}}$	average M _n ~5,000	480290-25ML
Poly(dimethylsiloxane), monohydroxy terminated, PDMS	$\overset{H_3C}{\underset{CH_3}{\leftarrow}} \overset{CH_3}{\underset{CH_3}{\leftarrow}} \overset{CH_3}{\underset{CH_3}{\leftarrow}} \overset{CH_3}{\underset{CH_3}{\leftarrow}} \overset{CH_3}{\underset{CH_3}{\leftarrow}} \overset{O}{\underset{CH_3}{\leftarrow}} \overset{O}{\underset{OH}{\leftarrow}}$	average M _n ~4,670	480355-50ML
Poly[dimethylsiloxane-co-(3-aminopropyl) methylsiloxane], PDMS	$\begin{array}{c} \overset{CH_3}{\underset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{CH_3}{\overset{H_3}{\overset{CH_3}{\overset{H_{1}}{\overset{H_{1}}{\overset{H_3}{\overset{H_3}{\overset{H}}{\overset{H_{1}}{\overset{H_{1}}{\overset{H}}{\overset{H_{1}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}{\overset{H}}}{\overset{H}}}{\overset{H}}}}}}}}$	-	480304-50ML 480304-250ML
Poly[dimethylsiloxane-co-[3-(2-(2-hydroxyethoxy) ethoxy)propyl]methylsiloxane], PDMS	$\underset{\substack{H_3C-Si-O}\\CH_3}{\overset{CH_3}{\underset{CH_3}{\vdash}}}\underset{\substack{CH_3}{\underset{CH_3}{\vdash}}\underset{\substack{GH_3}{\underset{H_3}{\vdash}}}{\overset{CH_3}{\underset{CH_3}{\vdash}}}\underset{\substack{GH_3}{\underset{H_3}{\vdash}}\underset{\substack{GH_3}{\underset{H_3}{\atop}}\underset{\substack{GH_3}{\atop}\atop{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\atop}}\underset{H_3}{\atop}$	-	480320-250ML
Poly[dimethylsiloxane-co-methyl(3-hydroxypropyl) siloxane]-graft-poly(ethylene glycol) methyl ether, PDMS	$\begin{array}{c} \begin{array}{c} C_{CH_3} \\ H_9 C_{SH}^{CH_3} - G_{CH_3}^{CH_3} \\ \overset{CH_3}{CH_3} \\ \end{array} \\ \begin{array}{c} \begin{array}{c} CH_3 \\ CH_3 \end{array} \\ \\ \begin{array}{c} CH_3 \\ CH_3 \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \end{array} \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \end{array} \\ \\ \begin{array}{c} CH_3 \\ CH_3 \end{array} \\ \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \end{array} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \end{array} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} CH_3 \\ CH_3 \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \end{array} \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \end{array} \\ \\ \\ \\ \\ \\ \\ \end{array} \\$	_	482412-50ML

バルク供給/スケールアップのご相談は… ファインケミカル事業部 Tel:03-5796-7340 Fax:03-5796-7345 E-mail:safcjp@sial.com

材料科学のポータルサイト **Aldrich Materials Science Web Portal**

ナノ材料/有機エレクトロニクス材料/代替エネルギー材料/ 高分子材料/無機材料/ナノエレクトロニクス材料

- ●新製品情報、最新テクノロジーの解説
- ●ニュースレター 「Material Matters™」、「材料科学の基礎」
- ●製品検索(構造式、化学名、CAS番号など)
- Web 製品カタログ
- ●ニュースレター、E-mailニュース定期配信の申し込み

http://www.sigma-aldrich.com/ms-jp

Material Matters

世界の第一線研究者による最新トピックスやレビューをご紹介します

バックナンバータイトル

- ●ナノ材料とその合成方法(4-1)
- 先端セラミック材料(4-2)
- ●有機および分子エレクトロニクス(4-3) ●代替エネルギー3(5-4)
- ●代替エネルギー 2(4-4)
- ●最新高分子合成(5-1)

●ナノ材料(5-2)

- ●生物医学用材料(5-3)
- ●ナノパターニングおよびリソグラフィ技術(6-1)

定期送付のお申し込みは下記 URL から

http://www.sigma-aldrich.com/mscatalog-jp

または、「Material Matters定期送付希望」と明記の上、sialjp@sial.comへ電子メールにてご連絡ください。

©2011 Sigma-Aldrich Co. All rights reserved. SIGMA, SAFC, SIGMA-ALDRICH, ALDRICH, FLUKA, and SUPELCO are trademarks belonging to Sigma-Aldrich Co. and its affiliate Sigma-Aldrich Biotechnology, LP. Plexcore is a registered trademark of Plextronics, Inc... SunTronic is a registered trademark of Sun Chemical, Inc... Zonyl is a registered trademark of El. du Pont de Nemours & Amp; Co., Inc... Material Matters is a trademark of Sigma-Aldrich Biotechnology LP and Sigma-Aldrich Co. Aedotron, Biotron and Oligotron are tradmarks of TDA Research, Inc...

・本カタログに掲載の製品及び情報は2011年6月1日現在の内容であり、収載の品目、製品情報、価格等は予告なく変更される場合がございます。最新の情報は、弊社Webサイト(sigma-aldrich.com/iapan)をご覧ください。 ・掲載価格は希望納入価格(税別)です。詳細は販売代理店様へご確認ください ・弊社の試薬は試験研究用のみを目的として販売しております。医薬品、家庭用その他試験研究以外の用途をご検討の場合は、ファインケミカル事業部に相談ください。

シグマ アルドリッチ ジャパン株式会社

アナリティカル&ケミストリー事業部 〒140-0002 東京都品川区東品川2-2-24 天王洲セントラルタワー4F

製品に関するお問い合わせは、弊社テクニカルサポートへ TEL:03-5796-7330 FAX:03-5796-7335 E-mail:sialjpts@sial.com

在庫照会・ご注文方法に関するお問い合わせは、弊社カスタマーサービスへ TEL:03-5796-7320 FAX:03-5796-7325

http://www.sigma-aldrich.com/japan

お問い合わせは下記代理店へ

SAJ1344 2011.6

