Material MattersTM

生物医学用材料

Materials for Biomedical Applications

細胞シート組織工学のための PNIPAMスマート表面

PEG構造を基盤としたヒドロ ゲルを用いたパターニング

デバイス/組織境界面のエン ジニアリングに使用される 共役ポリマー

歯科用修復材料開発の進展

ナノ材料の 毒性スクリーニング方法

Making life better with materials that matter

はじめに

2010年の第3号である今回は、「生物医学用材料」と題して、材料 科学、医学、化学、生物学の境界領域における4編の興味深い研究 成果を特集しました。リバプール大学のDavid F. Williams教授は、 生体材料を「生体系との相互作用を目的とした、医療用デバイスに 使用される無生物の材料」と定義しています。実際、生体材料が単 離された物質として使用されることはほとんどなく、一般にデバ イスやインプラントと共に使用されます。そして、組み立てられた 生物医学デバイスへの生物学的応答が最終的にそのデバイスの成 否を左右します。過去50年間にわたるこの分野の急速な発展は、 材料合成技術の進歩と共に、特に生物医学用途を念頭においた材

Materials Science Sigma-Aldrich Corporation

料設計に工学的原理が積極的に導入されたことが原動力となっています。本号では、こうした発展とそれを可能にした主要な材料をご紹介します。

まず、最初の論文は、モントリオール大学のFrançoise Winnik教授と東京女子医科大学の 岡野 光夫教授らによる、組織工学で用いられる培養した細胞の回収のための温度応答性グ ラフト材料に、ポリ(N-イソプロピルアクリルアミド)を用いた研究に関する論文です。次 に、テキサスA&M大学のMariah Hahn教授が、機能性組織の開発に利用される、生化学的 信号の表示を制御可能なポリ(エチレングリコール)ヒドロゲルの2Dおよび3Dパターニ ングの方法を解説します。デラウェア大学のDavid Martin教授とその共同研究者は、共役 チオフェンポリマーを用いた埋め込み型電極と細胞組織との電気的な相互作用について 論じます。また、コロラド大学のJames Stansbury教授とChristopher Bowman教授は、 歯科修復用コンポジット材料として使用されるモノマーとポリマーの開発における最近の 進展を解説します。現在、コンポジット材料の多くはナノスケールで設計されています。本 号の締めくくりとして、UCLAのAndre Nel教授とJeffrey Zink教授が率いる研究チーム が、医学へのナノテクノロジーの応用において大きな懸念事項である、ナノ材料の毒性試験 のためのハイスループットスクリーニング手法について報告します。

生物医学材料は、材料科学のどの分野よりも学際的な分野であり、材料、化学工学、生物、 化学などのさまざまなバックグラウンドを持つ研究者によって研究が進められています。 この分野の進展には、一貫して幅広い種類の材料が入手できると同時に、専門分野間での 知識移転や情報共有も極めて重要です。弊社では化学、材料科学、生物物理学など幅広い分 野の科学者を擁しており、たとえば、6ページのNIPAMポリマーなどの生物医学用途に特 化した新規なポリマーをはじめとする生体材料研究用製品の取り扱いに注力しています。

なお、本文の翻訳にあたっては、下記の先生方に監修していただきました。ご協力いただき誠にありがとうございました。ここに深く感謝いたします。

独立行政法人物質・材料研究機構 超分子グループ 有賀 克彦博士(ヒドロゲルを用いたパターニング、共役ポリマー) 歯学博士 石原 秀一郎先生(歯科用修復材料) 独立行政法人 産業技術総合研究所 安全科学研究部門 小林 憲弘博士(毒性スクリーニング)

表紙について

再生/修復医学、薬物送達などの医学研究の中で最も有望とされている分野では、キーと なる生体材料の開発が重要となっています。理想的な生物医学材料とは、細胞環境との相 互作用に必要な生物学的性質と、目的とする用途に要求される物理的および化学的性質の 両方を備えた材料です(関節置換術の場合には強度と生物学的安定性です)。このような材 料の作製は、分子レベルの研究から始まります。表紙には、医学用途のために分子レベル で調製された材料の2つの例を示しました。左に示した「bone screw」」は、ポリラクチド (右枠)とポリグリコリドからなる生分解性RESOMER®共重合体で作られています。また、 刺激応答性ポリマー材料は、4ページのNIPAMの論文で論じられています。

1) 表紙中央の画像は Boehringer-Ingelheim 社よりご提供いただきました。

Material Matters

Vol. 5, No. 3

目 次

生物医学用材料

はじめに	_ 2
表紙について	_ 2
"Your Materials Matter."	_ 3
細胞シート組織工学のための ポリ(<i>N</i> -イソプロピルアクリ ルアミド)修飾スマート表面	_ 4
PEG構造を基盤としたヒドロ ゲルを用いたパターニング -空間的複雑さの設計	10
デバイス/組織境界面のエン ジニアリングに使用される共 役ポリマー	16
歯科用修復材料開発の進展	21
ナノ材料の毒性スクリーニン グ方法	30

容量と価格は sigma-aldrich.com/japan をご覧下さい

本カタログに掲載の製品及び情報は2011 年2月現在の内容であり、収載の品目、製 品情報等は予告なく変更される場合がご ざいます。予めご了承ください。製品のご 注文に際し、価格、在庫の確認は裏表紙に 記載の弊社カスタマーサービスまでお問 合せください。なお、日本Webサイト (sigma-aldrich.com/japan)の製品検索 でも日本円と在庫状況をご確認いただけ ます。

はじ

6

a p

m / j

0

c

a-aldr

sigm

"Your Material Matters"

ll

「こんな物質を探している」、「こんな製品があれば便利」といったお問い合わせやご要 望はございませんか?アルドリッチでは、材料科学研究に有用な化合物の情報を募集 しております。sialjpts@sial.comまでお気軽にご連絡ください。

スタンフォード大学のNick Melosh 教授から、cis-9-Octadecene-1-thiol(Aldrich 製品番号719692)について製品化のご提案をい ただきました。この化合物を用いることで、固定化する脂質膜の 流動性に大きな影響を及ぼすと考えられる、不規則性自己組織化 単分子層の作製が可能です。cis-二重結合によって疎水性アルキ ル鎖の向きに不均一性が生まれるため、飽和アルキルチオール分 子と比較して膜の充填度が低くなり、流動性を持つ生体脂質膜に 似た不規則性単分子層が生じます 12。このような単分子層は、単 分子層で修飾した基板上にモデル脂質膜を固定化させるための支 持体として使用できます³。cis-9-Octadecene-1-thiolの末端チ オール基を利用して、金表面への組織化4または各種生物学的構 成要素による官能基化(たとえば、thiol-en クリックケミスト リーやマレイミド5およびアクリロイル化合物6の反応性二重結 合との反応の利用)が可能になります。

cis-9-Octadecene-1-thiol, 97%

CH₃(CH₂)₆CH₂ CH₂(CH₂)₆CH₂SH

Olevi mercantan [31494-22-1]	
$C_{18}H_{36}S$ FW 284.54	
density0.852 g/mL,	25 °C
719692-250MG	250 mg

References

(1) Rawicz, W.; Olbrich, K. C.; McIntosh, T.; Needham, D.; Evans, E. Biophys. J. 2000, 79, 328. (2) Silvius. J. R. Thermotropic Phase Transitions of Pure Lipids in Model Membranes and

- Their Modifications by Membrane Proteins; John Wiley & Sons, Inc.: New York. 1982. (3) Jans, K.; Van Meerbergen, B.; Reekmans, G.; Bonroy, K.; Annaert, W.; Maes, G.;
- Engelborghs, Y.; Borghs, G.; Bartic, C. Langmuir 2009, 25, 4564. (4) Bain, C. D.; Troughton, E. B.; Tao, Y.-T.; Evall, J.; Whitesides, G. M.; Nuzzo, R. G. J. Am. Chem.
- Soc. 1989, 111, 321. (5) Kosif, I.; Park, E.-J.; Sanyal, R.; Sanyal, A. Macromolecules 2010, 43, 4140.

(6) Dondoni, A. Angew. Chem. Int. Ed. 2008, 47, 8995

本号で特集するナノ材料

材料カテゴリー	内容	ページ
生物医学用スマートポリマー	PolyNIPAM、ポリ(ビニルアルコール)、ポリマーソームを形成するポリマー	7
生分解性ポリマー	Boehringer-Ingelheim 社製 RESOMER®をはじめとする生分解性ポリマー	8
ポリエチレングリコール	未修飾、単官能性、二官能性PEG	12
- 導電性ポリマー用モノマー	ポリピロール、ポリチオフェン合成用モノマー	19
導電性ポリマー	ポリピロール、ポリチオフェン	20
メタクリラートモノマー	メタクリラート、メタクリルアミドモノマー	25
架橋剤	アクリル、チオール、ビニル系架橋剤	26
光重合開始剤	有機光重合開始剤	28
アミン系重合開始剤	Norrish Type Ⅱ型有機光重合開始剤に用いられる第三級アミン	29
各種ナノ粒子	磁性ナノ材料、量子ドット、金属酸化物/セラミックスナノ粒子、 メソポーラス材料、金/銀ナノ粒子	33

細胞シート組織工学のための ポリ(N-イソプロピルアクリルアミド)修飾スマート表面

Masamichi Nakayama,¹ Teruo Okano,^{1*} and Françoise M. Winnik^{2**} ¹ Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University (TWIns), Kawada-cho 8-1, Shinjuku, Tokyo 162-8666, Japan ² Department of Chemistry and Faculty of Pharmacy, University of Montreal, CP 6128 Succursale Centre Ville, Montreal OC Canada H3C 3J7 Email: *tokano@abmes.twmu.ac.jp **francoise.winnik@umontreal.ca

はじめに

組織工学(ティッシュエンジニアリング)は、損傷または罹患した 器官や組織(例えば血管や膀胱)の治療における重要な手法となり ました1。しかしながら、いまだに残る大きな課題、特に細胞密度 の高い組織の構築や移植後の炎症の問題を克服する必要がありま す。現在、組織工学の有望な手法として、ポリ(N-イソプロピルア クリルアミド) (PNIPAM、Aldrich 製品番号 535311) をグラフト した細胞培養表面を利用する方法があります2。その基本的な考 え方は、温度の切り替えのみによってPNIPAMで改質した基板へ の細胞の接着/脱着を実現するというものです(図1)。

図1 (a) ポリ(N-イソプロピルアクリルアミド) グラフト表面への細胞の接 着(37℃)と脱着(20℃)を示す概略図。細胞の回収は、温度を下げるだけで 行うことができます。(b)37℃と20℃における、PNIPAMをコーティングし た培養皿上の内皮細胞の顕微鏡写真。左の写真に見られる伸張した細胞形 状は基材表面に接着している特徴を示し、右の写真で見られる丸みのある 細胞形状は溶液中の遊離した細胞の特徴を示しています。

培養した細胞は、培養皿一面に増殖した状態(コンフルエント状 態)に達したのちに、細胞培養温度を37℃から20℃に下げるだけ a p で、生体組織に似た細胞の単層すなわち「細胞シート」の形で Ε PNIPAM 修飾表面から剥離・回収することができます。この細胞 操作技術によって、生分解性ポリマーの足場を使用せずに細胞 シートをホスト組織に移植できるため、従来の組織工学の大きな 制約が克服されます。本稿では、水溶液中のPNIPAMの性質につ ma-aldr いて簡単に説明した後、このプロセスの基礎をなす化学的性質、 特に多機能細胞シートを得るために使用する改質表面の設計と作 製を中心に解説します。

ポリ(N-イソプロピルアクリルアミド): ユビキタススマートポリマー

PNIPAMは、クロロホルム、アセトン、メタノールをはじめとする 各種アルコールなどの有機溶媒に溶解します。また、溶液が適度 な低温に保たれる限り、水にも溶解します。PNIPAM水溶液を 32℃(曇点(CP: Cloud Point)または下限臨界溶液温度(LCST: Lower Critical Solution Temperature))以上に加熱すると、透明 な溶液が瞬時に乳白色の懸濁液に変わります。この現象は可逆的 で、32℃未満に冷却すると直ちに透明な溶液に戻ります。1960 年代後半に、HeskinsとGuilletによって水/PNIPAM系の相図が初 めて発表されましたが、これは、PNIPAM濃度の関数としての相転 移温度を測定することで作成されたものです4。これとほぼ同時期 に、架橋した網目構造 PNIPAM (ゲル)も水中で特異な性質を示す ことが明らかになっています。すなわち、このゲルは冷水中で大 きく膨潤しますが、32℃を超えて加熱すると直ちに収縮します。 PNIPAM 溶液の場合と同様にゲルの挙動は可逆的で、32℃未満に 冷却すると直ちに元の体積まで膨潤します。数百回の膨潤/収縮 サイクルを繰り返しても、ゲルに材料疲労の兆候は現れません。 Allan S. Hoffmannはこの特異な現象に注目しました。彼は、色素 や薬物の放出をはじめとする生物医学的応用に関連した現象を制 御するために、温度によって引き起こされる PNIPAM 誘導体の相 転移を利用した、最初の研究者の1人です5。この先駆的な研究に よって応答システム分野の基礎が築かれ、現在も引き続き研究が 盛んに行われています。。PNIPAM水溶液が示す熱誘起相転移はそ れ固有の性質ではなく、その他の多くの水溶性ポリマーが曇点を 持ちます。しかし、PNIPAMは、転移の鋭敏さ、体温に近い転移温 度、ポリマー自体の強固さ、およびポリマーとその相転移に関す る情報が容易に入手可能であるために、今なお、生物医学分野で 最もよく研究され続けている物質です。

分子レベルにおいて、巨視的な相転移は、PNIPAM 鎖の脱水和とそ れに続く水分子の解離した疎水性鎖の小型球状物質(より大きな メソ球状物質に凝集します)への変化に対応します(図2)78。ただ

図2 ポリ(N-イソプロピルアクリルアミド) (PNIPAM) 水溶液の温度応答 性。(a)LCST以上に加熱すると、水和して伸張していた PNIPAM 鎖は結合し ている水分子を放出しながら疎水性のグロビュール状態へと変化します。 (b) PNIPAMの化学構造。(c) 温度の関数としてプロットした PNIPAM 水溶 液の溶液透過率。LCSTは転移曲線の中点に対応します。

細胞シ

0

c

sigı

し、この相転移は、温度変化による分子の再配列のみに起因して いるわけではありません。その他のいくつかの要因がPNIPAMの CPに影響を与える可能性がありますが、その効果は必ずしも予測 可能なものではありません。

分子量-曇点に対するポリマー分子量の影響について議論されて います。水中のPNIPAMの曇点が分子量と直接関係していること を示す報告がある一方で、CPが逆の分子量依存性を示すという報 告や、PNIPAM水溶液のCPは分子量に依存しないという報告もあ ります。これらの違いは、高分子鎖未端の化学的性質がCP値に大 きな影響を与える比較的短いポリマー鎖(M_w < 20,000 g/L)で得 られた結果と比較すると、特に際立っています⁹。親水性末端基を 持つポリマーは、低濃度の溶液で比較的高い曇点を示す傾向があ るのに対し、疎水性末端基を持つポリマーのCPの場合、同じ条件 下であればこれより通常低くなります¹⁰。n-オクタデシル鎖など の疎水性の強い末端基を持つPNIPAM溶液ではこの傾向は見られ なくなり、水中で自己組織化してフラワーミセルや星形ミセルを 形成します^{11,12}。

溶媒系-多溶媒系の存在もPNIPAMのCPに影響を与える可能性 があります。たとえば室温において、広い組成範囲にわたる水/メ タノール混合溶液にPNIPAMは溶解せず、共貧溶媒性(cononsolvency)と呼ばれる現象を示します¹³。

塩の存在-塩の存在もPNIPAM水溶液のCPに影響を与える可能 性があり、ある塩はCPを上昇させますが、別の塩を添加した場合 にはCPが低下します。これらの観察結果に対して、いくつかの説 明がなされています¹⁴。PNIPAMの相転移に影響を与える要因が 完全に理解されれば、それらを利用して、PNIPAMを調製、最適化 し、更なる応用に用いることができるようになります。しかしな がらその一方で、すでにいくつかの非常に興味深い用途におい て、この優れたポリマー材料の利用が進んでいます。

細胞シート工学用の 温度応答性細胞培養皿

PNIPAMをコーティングした細胞培養皿は、NIPAMの2-プロパ ノール溶液を市販の組織培養用ポリスチレン(TCPS)製細胞培養皿 に塗布した後、NIPAMモノマー(Aldrich製品番号724459)へ電 子線照射(150 kV、0.3 MGy)することによって調製します(図3)。 この処理によって、NIPAMの重合とTCPS表面上における成長ポ リマー鎖の共有結合グラフト化が同時に生じます。この方法はク リーンな上、スケールアップとパターニングが容易であり、ポリ マー層の厚さの微調整が可能です。ほとんどの細胞培養用途では、 グラフトしたPNIPAMの膜厚は15~20 nmの範囲が必要であり、 これは1.4~2.0 μg/cm²のグラフト密度に相当します¹⁵。

図3 ポリ(N-イソプロピルアクリルアミド)でグラフトした細胞培養皿の 作製手順を示した概略図 通常のTCPS培養皿と同様の条件下で、さまざまなタイプの細胞 が温度応答性PNIPAM培養表面上で接着して増殖します。37℃で 細胞がコンフルエントな状態に達した後、培養皿を32℃未満(通 常は20℃)に冷却します。ポリマー鎖は再び水和して細胞は接着 しなくなるため、細胞は連続した単一の層からなる細胞シートの 形で培養表面から剥離します。従来の細胞ベースの組織工学で は、細胞接着分子と細胞外マトリックス(ECM: extracellular matrix)たんぱく質を分解することで細胞を剥離回収しているた めに、たんぱく質分解酵素(たとえば、トリプシンやディスパー ゼ)を培地に加えます。この処理は、さまざまな種類の細胞に関す る特徴的な機能に不可欠な細胞膜たんぱく質に影響を与える可能 性もあります。一方、温度応答性表面上で培養した細胞を回収す るための酵素処理は必要ありません。したがって、回収した細胞 シートは、その基底に存在するECMたんぱく質を保持したまま、 新しい培養皿、他の細胞シート、または生体組織に移すことがで きます。現在、いくつかの細胞シート組織工学の臨床試験が進め られており、角膜や歯根膜などの単一細胞シートの移植が行われ ています。継続中の研究には、同種および異種の細胞シートを複 数用いて積層化させた3次元の組織様構造(たとえば、心臓や肝臓 の組織)の作製などがあります1%。

異種細胞の共培養に用いられる パターニングされた温度応答性表面

特定の組織機能を模倣するには、異種細胞間で相互作用を持ち、 空間的に整列した組織構造を再構築する必要があります。一般 に、細胞種が異なると接着特性と増殖特性も異なるため、複数の 細胞種を1つの3次元組織構造の中に統合することは容易ではあ りません。多くの場合、異なる細胞種の共培養は微細パターニン グされた表面上で行われます。温度応答性を持つ微細パターニン グ表面は、PNIPAMのLCSTがコモノマーによっても調節できるた め、容易に作製可能です。LCSTは、親水性コモノマーとのNIPAM 共重合体では32℃より高く、n-メタクリル酸ブチル(BMA)などの 疎水性モノマーとのNIPAM共重合体では32℃未満です。微細パ ターニング表面を調製するには、BMA(Aldrich製品番号 235865)の2-プロパノール溶液をPNIPAM グラフトTCPS 培養皿 の上に塗布します。その後、BMAを塗布した表面に、ステンレスス チール製の微細パターンマスクを通して電子線を照射します17。 照射した領域のあらかじめ作製しておいた PNIPAM 層に BMA モ ノマーがグラフトされる一方、マスク領域では元のPNIPAMがそ のままの状態に保たれます。照射領域の転移温度は32℃未満で す。実際のLCST値は、BMAの組み込み量を制御して調節します。 このパターニング方法を、肝細胞(HC)と内皮細胞(EC)の共培養 に応用した例を図4に示します。

まず、27℃に保った微細パターニング上にHCを播種します。この温度で脱水和した疎水性のP(NIPAM-co-BMA)領域にしかHC は接着しません。PNIPAM領域は27℃で水和し、親水性を示すた めに細胞は接着しません(**図4a**)。次に、HCが接着した後に培養 皿を37℃に加温します。するとPNIPAM領域が疎水性となり、EC が接着します。ECはPNIPAM領域に接着して増殖します(**図4b**お よび**4c**)。培養温度を20℃に下げると、表面全体の水和が進み、共 培養した細胞単層は自発的に剥離し、異種細胞間で相互作用のあ る連続した細胞シートが得られます。回収した共培養細胞シート を操作して他の細胞シートの間に挟むと、生体組織を模倣した多 層構造物を作製することができます。

細胞シ

·組織工学のためのポリ(N-イソプロピルアクリルアミド)

)修飾スマ

表

面

図4 パターニングされた温度応答性表面を用いた共培養細胞シートのパ ターン状の細胞共培養と回収を示す概略図。(a) 肝細胞(HC)を27℃で播種 および培養すると、疎水性を示す P(NIPAM-co-BMA) グラフト領域に HCが 局在化します。(b) 次に、内皮細胞(EC)を37℃で播種および培養すると、パ ターニングされた共培養が生じます。(c) 温度を20℃に下げると、共培養さ れた細胞シートが剥離します。右の写真は、回収したパターニング共培養 細胞シートです(Scale bar: 1 cm)。

温度応答性培養皿の機能化

化学的に活性な(機能性)コモノマーをグラフト化 PNIPAM 層に組 み込むと、生理活性分子を導入する部位として活用することがで きます(図5を参照)¹⁵。

図5 インテグリン受容体とRGDS(Arg-Gly-Asp-Ser)ペプチドの間の温度 応答性アフィニティー制御を示す概略図。RGDS配位子は、カップリング試 薬としての*N*-(3-dimethylaminopropyl)-*N*-ethylcarbodiimide hydrochloride(水溶性カルボジイミド(WSC、Aldrich製品番号E1769)) とのアミド結合によって、P(NIPAM-co-CIPAAm)と結合します。温度応答 性ポリマーは37℃で収縮し、細胞膜インテグリン受容体(黄色)からRGDS 配位子(赤色の点)が露出します。このようにして、RGDS固定化温度応答性 培養皿の上で、細胞を無血清条件で培養することが可能です。培養温度を 20℃に下げると、細胞は非侵襲的に回収されます。RGDS配位子は、温度応 答性ポリマー表面に付着した状態で残ります。

 最初に、NIPAM/2-carboxyisopropylacrylamide(CIPAAm)の混 合物(CIPAAm含有率:1~5mol%)の電子線重合により、TCPS 培養皿をNIPAMとCIPAAmの共重合体でグラフト化します。その 後、合成細胞の接着したテトラペプチドArg-Gly-Asp-Ser(RGDS、
 Sigma製品番号A9041)を標準的なアミド結合形成反応によっ てP(NIPAM-co-CIPAAm)グラフトTCPS培養皿に共有結合させま す¹⁸。表面上のRGDSに存在することで、組み換え成長因子を添加 した無血清条件下で37℃における細胞の接着と増殖が促進され ます。コンフルエントな状態に達した後、PNIPAMグラフト培養皿 の場合と同様に温度を20℃に下げるだけで、細胞を完全な状態の 細胞シートとして回収できます。PNIPAM表面鎖の再水和によっ て、表面固定化RGDSペプチドと細胞膜インテグリン受容体の間 の相互作用は不可逆的に解消されます。この方法によって培養期 間が大幅に短縮され、従来使用されてきたウシ胎児血清を用いず に細胞の培養が可能になります。このことは、ヒトの細胞療法の 臨床応用に使用される組織を製造する上で必要なほ乳類由来のサ プリメントに起因する潜在的なリスクを回避する観点からも重要 な成果です。

結論

今後、温度応答性細胞シート作製技術が進展するには、さまざま な組織の細胞シートを精密に作製するための高精度で最適化され たPNIPAM グラフト表面の構築が必要不可欠です。期待されてい る表面作製法の一つに、原子移動ラジカル重合(ATRP)や可逆的付 加-開裂連鎖移動型ラジカル(RAFT)重合などの精密ラジカル重合 法があり、高分子鎖の厚さとグラフト密度が制御されたPNIPAM ブラシを利用することができます¹⁹⁻²¹。これらの新規なスマート 表面の開発と研究、および医学用途での使用によって、生物学と 医学の分野において新たな領域が切り開かれるでしょう。

References

- (1) Vacanti, C. A. MRS Bulletin 2001, 26, 798.
- (2) Yamada, N.; Okano, T.; Sakai, H.; Karikusa, F.; Sawasaki, Y.; Sakurai, Y.; Makromol. Chem. Rapid Commun. 1990, 11, 571.
- (3) Schild, H. G. Prog. Polym. Sci. 1992, 17, 163.
- (4) Heskins, M.; Guillet, J. E. Macromol. Sci. Chem. A 1968, 2, 1441.
- (5) Ding, Z.; Chen, G.; Hoffman, A. Bioconjugate Chem. 1996, 7, 121
- (6) Cohen Stuart, M. A.; Huck, W. T. S.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F. M.; Zauscher, S.; Luzinov, I.; Minko, S. *Nat. Mater.* **2010**, *9*, 101.
- (7) Okada, Y.; Tanaka, F. *Macromolecules* **2005**, *38*, 4465.
- (8) Kujawa, P.; Aseyev, V.; Tenhu, H.; Winnik, F. M. Macromolecules 2006, 39, 7686.
- (9) Xia, Y.; Burke, N. A. D.; Stover, H. D. H. *Macromolecules* **2006**, *39*, 2275.
- (10) Duan, Q.; Miura, Y.; Narumi, A.; Shen, X.; Sato, S.-I.; Satoh, T.; Kakuchi, T. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 1117.
- (11) Kujawa, P.; Segui, F.; Shaban, S.; Diab, C.; Okada, Y.; Tanaka, F.; Winnik, F. M. Macromolecules 2006, 39, 341.
- (12) Kujawa, P.; Tanaka, F.; Winnik, F. M. *Macromolecules* **2006**, *39*, 3048.
- (13) Tanaka, F.; Koga, T.; Kojima, H.; Winnik, F. M. Macromolecules 2009, 42, 1321.
- (14) Zhang, Y.; Furyk, S.; Bergbreiter, D. E.; Cremer, P. S. J. Am. Chem. Soc. **2005**, *127*, 14505.
- (15) Akiyama, Y.; Kikuchi, A.; Yamato, M.; Okano, T. Langmuir 2004, 20, 5506.
- (16) Yang, J.; Yamato, M.; Nishida, K.; Ohki, T.; Kanzaki, M.; Sekine, H.; Shimizu, T.; Okano, T. J. Controlled Release 2006, 116, 193.
- (17) Tsuda, Y.; Kikuchi, A.; Yamato, M.; Chen, G.; Okano, T. *Biochem. Biophys. Res. Commun.* 2006, 348, 937.
- (18) Ebara, M.; Yamato, M.; Aoyagi, T.; Kikuchi, A.; Sakai, K.; Okano, T. Biomacromolecules 2004, 5, 505.
- (19) Mizutani, A.; Kikuchi, A.; Yamato, M.; Kanazawa, H.; Okano, T. *Biomaterials*, 2008, 29, 2073.
- (20) Takahashi, H.; Nakayama, M.; Yamato, M.; Okano, T. Biomacromolecules, ASAP
- (21) For a brief introduction to ATRP and RAFT polymerizations, please see Material Matters[™] 2010, Vol. 5, No. 1

sigı

生物医学用スマートポリマー

高分子材料の最新情報は sigma-aldrich.com/polymer-jp をご覧ください。

Poly(N-isopropylacrylamide)(PNIPAM)Materials

	• · ·		61 7 110
Name	Structure	Molecular Weight	CA1. NO.
		Mn 10,000-15,000	/24459-50
Poly(N-isopropylactylamide)	H ₂ C CH ₂	M. 20.000-25.000	535311-10G
	O. NH	110 20,000 20,000	555511 100
	\neg		
Poly(N-isopropylacrylamide), amine terminated	H ₃ C _C CH ₃	average M _n 2,500	724823-1G
	O _S NH		724823-5G
	H ₂ N		
	s[] _n		
Poly(N-isopropylacrylamide), amine terminated	H ₃ C _V CH ₃	average M _n 5,500	724831-1G
	O NH		/24831-5G
	H ₂ NS		
Deb (At is a second and an idea) and a second is			704015 16
acid terminated		average M _n 2,000	724815-1G 724815-5G
	S		
		14 5000	724007.46
acid terminated		average M _n 5,000	724807-1G 724807-5G
	SOH		
		14 7000	72406646
acid terminated		average M _n 7,000	724866-1G 724866-5G
	с он		
		14 2000	72404046
Poly(N-Isopropylacrylamide), maleimide terminated	H ₃ C CH ₃	average M _n 2,000	731048-1G 731048-5G
	ő		
Poly(N-isopropylacrylamide), maleimide terminated	H ₃ C_CH ₃	average M _n 4,000	728632-1G
	o _≫ NH o		728632-5G
	0		
Poly(N-isopropylacrylamide), N-hydroxysuccinimide (NHS) ester terminated	H ₃ C CH ₃	average M _n 2,000	725668-1G 725668-5G
(wib) ester terminated	° → NH ° →		725000 50
	Ô		
Poly(N-isopropylacrylamide-co-methacrylic acid)	h + h	M _n 40,000-60,000	724467-5G
	HaC CHa		
Dalu/Misanzan daga daga da aratha aratha arath		M 40.000 00.000	734959 50
	$\downarrow \downarrow_x \downarrow_y$	IVI _n 40,000-80,000	/24858-56
	H ₃ C ^C CH ₃		
Poly(N-isopropylacrylamide-co-methacrylic		M _n 30,000-60,000	724475-5G
acid-co-octadecyl acrylate)	1 T _x l T _y l T _z H ₂ C N G H ₃ C OH		
	H O OFOCH ₂ (CH ₂) ₁₆ CH ₃		

7

ALDRICH Materials Science

Name	Structure	Molecular Weight	% Hydrolyzed	CAT. NO.
Poly(vinyl alcohol)	(OH) n	M _w 9,000-10,000	80%	360627-25G 360627-500G 360627-1KG
Poly(vinyl alcohol)	(OH) n	M _w 13,000-23,000	87-89%	363170-25G 363170-500G 363170-1KG
Poly(vinyl alcohol)	(OH) n	M _w 31,000-50,000	98-99%	363138-25G 363138-500G 363138-1KG
Poly(vinyl alcohol)	(OH) n	M _w 89,000-98,000	99+%	341584-25G 341584-500G 341584-1KG
Poly(vinyl alcohol)	(OH) n	M _w 85,000-124,000	99+%	363146-25G 363146-500G 363146-1KG
Poly(vinyl alcohol)	(OH) n	average M_w 130,000	99+%	563900-500G 563900-1KG
Poly(vinyl alcohol)	(OH) n	M _w 146,000-186,000	99+%	363065-25G 363065-500G 363065-1KG

Polymersome Forming Polymers

Name	Structure	Molecular Weight	CAT. NO.
Poly(styrene)- <i>block</i> -poly(acrylic acid)	$H_3C \sim O \rightarrow H_3C \sim O \rightarrow H_3C \sim O \rightarrow O \rightarrow H_3C \sim O \rightarrow O$	M _n 5,580-6,820 (polystyrene) M _n 1,890-2,310 (poly(acrylic acid)) M _n 7,470-9,130	686794-500MG
Poly(styrene)- <i>block-</i> poly(ethylene glycol)	$H_{3}CO \left(O \right) \cap \left(O \right$	M _n 20,700-25,300 (polystyrene) M _n 800-1,200 (PEG) M _n 22,500-27,500	686476-500MG

生分解性ポリマー

Name	Structure	Molecular Weight	CAT. NO.
Poly(L-lactide), ester terminated inherent viscosity 0.8-1.2 dL/g (RESOMER® L 206 S)		-	719854-5G 719854-25G
Poly(L-lactide), inherent viscosity ~0.5 dl/g		M _n 50,400 M _w 67,400	94829-1G-F 94829-5G-F
Poly(L-lactide), inherent viscosity ~1.0 dl/g		M _n 59,100 M _w 101,700	93578-5G-F
Poly(L-lactide), inherent viscosity ~2.0 dl/g		M _n 99,000 M _w 152,000	81273-10G
Poly(L-lactide), inherent viscosity ~4.0 dl/g		M _n 103,200 M _w 258,700	95468-1G-F 95468-5G-F
Poly(0,L-lactide), ester terminated (RESOMER R 202 S)		M _w 10,000-18,000	719951-1G 719951-5G

8

▲ ALDRICH^{*} Materials Selence sigma - aldrich.com/japan

Name	Structure	Molecular Weight	CAT. NO.
Poly(o,L-lactide), ester terminated (RESOMER* R 203 S)		M _w 18,000-28,000	719935-1G 719935-5G
Poly(oµ-lactide), acid terminated (RESOMER R 203 H)		M _w 18,000-24,000	719943-1G 719943-5G
Poly(0,1-lactide), acid terminated (RESOMER R 202 H)		M _w 10,000-18,000	719978-1G 719978-5G
Poly(dioxanone), viscosity 1.5-2.2 dL/g (RESOMER X)		-	719846-1G 719846-5G
Polyglycolide, inherent viscosity 1.4-1.8 dL/g		-	457620-5G
Poly(DL-lactide-co-glycolide), 85:15 lactide:glycolide	$\begin{bmatrix} 0 \\ -H_3 \end{bmatrix}_x \begin{bmatrix} 0 \\ 0 \end{bmatrix}_y$	M _w 50,000-75,000	430471-1G 430471-5G
Poly(IL-lactide-co-glycolide), acid terminated, (75:25) (RESOMER RG 752 H)	$\begin{bmatrix} 0 \\ -H_3 \end{bmatrix}_x \begin{bmatrix} -1 \\ 0 \end{bmatrix}_y$	M _w 4,000-15,000	719919-1G 719919-5G
Poly(oL-lactide-co-glycolide), ester terminated, (75:25) (RESOMER RG 756 S)	$\begin{bmatrix} 0 \\ -H_3 \end{bmatrix}_x \begin{bmatrix} -T_1 \\ 0 \end{bmatrix}_y$	M _w 76,000-115,000	719927-1G 719927-5G
Poly(pL-lactide- <i>co</i> -glycolide), acid terminated, (65:35) (RESOMER RG 653 H)	$\begin{bmatrix} 0 \\ -H_3 \end{bmatrix}_x \begin{bmatrix} -H_3 \end{bmatrix}_y$	M _w 24,000-38,000	719862-1G 719862-5G
Poly(pL-lactide-co-glycolide), acid terminated, (50:50) (RESOMER RG 502 H)	$\begin{bmatrix} 0 \\ -H_3 \end{bmatrix}_x \begin{bmatrix} -J \\ 0 \end{bmatrix}_y$	M _w 7,000-17,000	719897-1G 719897-5G
Poly(bL-lactide- <i>co</i> -glycolide), ester terminated, (50:50) (RESOMER RG 502)	$\begin{bmatrix} 0 \\ -H_3 \end{bmatrix}_x \begin{bmatrix} -0 \\ 0 \end{bmatrix}_y$	M _w 7,000-17,000	719889-1G 719889-5G
Poly(pL-lactide- <i>co</i> -glycolide), acid terminated, (50:50) (RESOMER RG 503 H)	$\begin{bmatrix} 0 \\ -H_3 \end{bmatrix}_x \begin{bmatrix} -J \\ 0 \end{bmatrix}_y$	M _w 24,000-38,000	719870-1G 719870-5G
Poly(DL-lactide- <i>co</i> -glycolide), acid terminated, (50:50) (RESOMER RG 504 H)	$\begin{bmatrix} 0 \\ -H_3 \end{bmatrix}_x \begin{bmatrix} 0 \\ 0 \end{bmatrix}_y$	M _w 38,000-54,000	719900-1G 719900-5G
Polylactide-block-poly(ethylene glycol)-block-polylactide	$HO \begin{bmatrix} O \\ CH_3 \\ CH_3 \end{bmatrix}_x - O + \int_y \begin{bmatrix} O \\ CH_3 \\ CH_3 \end{bmatrix}_z H$	PEG average M _n 900 PLA average M _n 3,000 (total)	659630-1G
Polylactide-block-poly(ethylene glycol)-block-polylactide	$HO \begin{bmatrix} O \\ -CH_3 \end{bmatrix}_x - O = \int_y \begin{bmatrix} O \\ -CH_3 \end{bmatrix}_z H$	PEG average M _n 10,000 PLA average M _n 2,000	659649-1G

PEG構造を基盤としたヒドロゲルを用いた パターニング - 空間的複雑さの設計

Mariah S. Hahn Department of Chemical Engineering, Texas A&M University, 200 Jack E. Brown Bldg, 3122 TAMU College Station, TX 77843-3122 Email: mhahn@tamu.edu

はじめに

組織工学用に開発された生体材料の足場の多くは比較的均一であ り、in vivoの細胞微小環境の持つ複雑さや組織構造を備えていま せん。これらの均一な足場によって、微小環境に対する細胞応答 の理解が大きく進みましたが、生体材料の性質とその生物学的機 能に与える影響の間の動的な関係を明らかにするには、空間的か つ時間的により複雑な足場が必要であると思われます。そこで、 空間的、時間的いずれにおいても、生化学的および生体力学的な 信号の表示を制御できるような、さまざまなパターニング方法が 開発されてきました。3Dマトリックスの性質が動的に変化する ことに対する細胞応答を明らかにするには、細胞を生きたままで 足場を変化させなければなりません。したがって、シリコンやガ ラスの基板に応用されているパターニング技術の多くは、そのま まではこれらの用途に利用することができません。本論文では、 細胞の存在下で応用できるいくつかの2Dおよび3D足場パター ニング技術の利点と限界について論じます。今回はポリ(エチレ ングリコール) (PEG) ベースのヒドロゲルに関する方法について 説明しますが、技術的には光学的に透明な光活性を持つどのよう な物質に対しても応用が可能です。

ヒドロゲルは、これまで複雑なデバイスの作製、薬物放出、および 組織工学に広く利用されている生体材料足場として有用です。特 に、PEG構造を基盤としたヒドロゲルは、組織工学用途に極めて 汎用的であることが実証されています。PEGはさまざまな用途に 対してFDA認証を受けており、高い生体適合性を持ち、かつ免疫 原性をほぼ(まったく)示しません。さらに、軟部組織の再生に適 した範囲で、PEG構造を基盤としたヒドロゲルは調節可能な機械 的性質を持っています。パターニングに用いる際に重要な点とし て、PEG構造を基盤としたヒドロゲルは本質的にたんぱく質吸着 と細胞接着に対する耐性を持つため、希望する生体機能性を構築 するための生物学的な「白紙状態(blank slate)」が得られることが 挙げられます1。PEGヒドロゲルを合成するには、2つ以上の架橋 可能な官能基(たとえば、アクリル基)を持つ各PEG鎖を水溶液に 溶解し、適切な光重合開始剤(たとえば、2,2-dimethoxy-2-phenyl acetophenone)と混合したのち、紫外光または可視光を照射し ます23。アクリル基がフリーラジカル重合によって架橋し、不溶 性のヒドロゲル網目構造が生成します。この重合反応には、光重 合開始剤および光源の強度に応じた1~10分間の光照射が必要 で、細胞が生存可能な穏やかな条件下で行うことができます。重 合反応は迅速に進みますが、酸素や他のフリーラジカルによる効 果的な停止反応によって光誘起重合の空間的局在性が保たれると

考えられています。これは、精密なパターン形成には不可欠な特 性です。

PEG構造を基盤としたヒドロゲルのパターニングは、大きく2つ の方法に分けることができます。1つは、複雑な形状を持つヒドロ ゲル網目構造の作製に重点を置いたものです。もう1つは、既存 の(あらかじめ形成された)多くの細胞を含むヒドロゲル構造体 の、空間的および時間的な改質に重点を置いたものです⁴⁻¹⁶。この レビューで注目する後者の手法の開発は、細胞機能と複雑な組織 再生における生体力学的信号と生化学的信号の空間的および時間 的役割を理解するのに特に重要です。以下の議論の中で、「2Dパ ターニング」という用語は、x - y方向には変化するがz方向は一様 なパターンの形成を指し、「3Dパターニング」は、x、y、およびz方 向に変化するパターンの生成を指します。言い換えると、これら の用語は、パターニングされた物質の次元ではなく、パターンの 空間的変化の次元を表します。

2次元パターニングの方法

透明性を利用したフォトリソグラフィーは、2Dの生化学的およ び生体力学的パターンを既存のヒドロゲル構造体中に作製する 1つの方法です。1つの具体例として、PEG-diacrylate(PEGDA、 Aldrich製品番号701971、701963)からヒドロゲルを調製しま した。この際、その後の反応に利用できる十分な量の遊離アクリ ル基が残るようにしました10。次に、パターニングに用いられるア クリラート成分をこれらの「不完全に」重合したゲルの表面に塗布 し、透明なフォトマスクをヒドロゲル表面に直接接触するように 置きました。フォトマスクを通してヒドロゲルに光照射すること で、モノアクリラート成分が、ヒドロゲル表面のマスクの光透過 部分に対応する領域に共有結合で固定化されます。このモノアク リラート細胞接着性成分をパターニングすることにより、パター ニングされていない領域は生体不活性のまま、細胞-材料間の相 互作用を持つ特定領域を定義できます(図1)。この方法を順次適 用することによって、複数の細胞接着性ペプチドをヒドロゲルの 表面上に容易にパターニングすることが可能です10,15。

図1 透明性を利用したパターニング。(a)透明性を利用したフォトリソグ ラフィーにより既存のREGDAヒドロゲル網目構造の表面上に形成した、蛍 光標識されたモノアクリラート誘導体化細胞接着性ペプチドArg-Gly-Asp-Ser(RGDS)のパターン。(b)関連するヒト皮膚線維芽細胞の表面接着。パ ターニングされていない領域が生体不活性のまま残っていることがわかり ます。

Westらが示したとおり、アクリラート種が照射前にヒドロゲル 網目構造内に拡散できるようにすれば、得られるパターンはゲル の層全体にわたって広がり、ヒドロゲル内部での細胞の挙動を制 御するのに利用できます(図2)¹¹。さらに、パターニングに用いる

a p

Ε

0 U

c

ma-aldr

sigı

物質が2つ以上のアクリル基で官能化されていれば、ヒドロゲルの生体力学的性質を局所的に変化させることができます…。

図2 蛍光標識されたモノアクリラート誘導体化RGDSによる、透明性を利用したフォトリソグラフィーを用いてパターニングしたチャネル内に限定された細胞移動。これらのパターニングされたチャネルは、あらかじめ作製したコラゲナーゼ分解性PEGDAヒドロゲルの中に形成されたものです。 パターニングされたヒドロゲル(アクリラート誘導体化RGDS(緑色)およびクラスター状HT-1080細胞(赤橙色))の共焦点顕微鏡画像(zスタック)をOsiriX 3Dボリュームレンダリング処理した(a)上面図、および(b)側面図。(b)に見られるRGDS強度の見かけ上の不均一さは、実際に強度が不均一であるためではなく、主に画像処理によって生じたものです。

物理的なフォトマスクを使用する方法とは対照的に、標準的な共 焦点顕微鏡のレーザースキャニング機能を使用して、ヒドロゲル の2D表面パターンを作製することができます⁹。透明性を利用し たヒドロゲルのパターニング方法と同様に、あらかじめ作製され た不完全に重合したPEGDAヒドロゲルの表面にアクリラート種 を塗布します。レーザースキャンとレーザーシャッターをコン ピュータ制御すると、いわゆる「仮想マスク」が得られてヒドロゲ ル表面の希望する領域にのみレーザー光が照射されます。West らが示したように、ヒドロゲル表面に結合するアクリラート種の 量は、レーザー強度またはスキャン速度を調節して空間的に制御 でき、複雑な2Dの濃度勾配を得ることができます(図3a)%。従来 のフォトリソグラフィー用マスクを使用した場合には、このよう な照射量による空間制御を行うことは容易ではありません。連続 的な照射サイクルの間に洗浄ステップを組み込むことによって、 複数の生物活性ペプチドをヒドロゲル表面にパターニングするこ とが可能です% さらに、集束レーザービームの代わりに局所レー ザービームを使用すると、適度な厚みをもつ足場全体に均一な断 面パターンを形成できます5。

図3 標準的なレーザースキャニングリソグラフィーと2光子レーザース キャニングリソグラフィー。(a)標準的な共焦点顕微鏡の「仮想マスク」機能 を使用して、既存のPEGDAヒドロゲル網状構造の表面に形成した、蛍光標 識されたモノアクリラート誘導体化細胞接着性ペプチドRGDSのグラデー ションパターン。(b)2光子レーザーを備えた共焦点顕微鏡を使用して、蛍 光標識されたアクリラート誘導体化RGDS(白色)でパターニングされた、 ヒドロゲルの共焦点顕微鏡画像(zスタック)のOsiriX 3Dボリュームレンダ リング処理した側面図。

3次元パターニングの方法

上に述べた方法は、垂直方向に均一なパターンの作製に限られま す。あらかじめ作製したヒドロゲルの中に、天然組織を模倣した 空間的に複雑なパターンを実現するために、2光子励起過程を用 いたパターニングが研究されています。2光子吸収の現象を利用 して、3D蛍光イメージングや3Dリソグラフィーによる微細加工 の開発が可能です。これらの方法はいずれも、励起ビームを細く 絞ることによって、2光子吸収領域を励起光波長のおよそ半分の 焦点領域に限定できることを利用しています。ラジカル拡散の時 間スケールがラジカルの半減期と比較して長いために、光開始ラ ジカル重合などのその後の反応もこの狭い領域内に限定されま す。その結果、2光子レーザービームの焦点の位置を指定すること により、光誘起による結合領域を正確に決定できます。これは、光 誘起結合が焦点面の外側で生じる「標準」レーザーと異なる点で す。多光子レーザーモジュールは、現在市販されているほとんど の共焦点顕微鏡で利用可能であり、これら機器に付属している、 レーザースキャンとレーザーシャッターの機能を用いて2光子パ ターニングを容易に行うことができます。

既存のヒドロゲル網目構造の中に3Dパターンを作製するには、重 合が不完全なPEGDAヒドロゲルを再度調製し、アクリラート成分 をゲル網目構造の中に拡散させた後、ヒドロゲルを共焦点顕微鏡 のステージ上に置き、2光子レーザースキャニングを開始します。 2光子パターニングサイクル中に照射時間またはビーム強度を変 えることにより、改質の度合を空間的に調整できます^{11,16}。重合 後、不均一に分布したパターニング分子を露出させるために、残っ た前駆体物質をヒドロゲルから外部に拡散させます(図**3b**)¹¹。

化学反応の拡張

上述のPEDGAヒドロゲルの2Dおよび3Dパターニング方法は、 PEGヒドロゲルの生成とゲル網目構造への各種化学種の結合の両 方に同じ化学反応を使用しています。ところが、この方法ではパ ターニングプロセス自体によって最初のゲル構造が変化し、網目 構造の改質度は、未反応のアクリル基がどの程度利用できるかに よって制限されます。さらに、希望する生物活性部分を必要に応 じて追加できますが、生物活性信号を直ちに除去することはでき ません。これらの制約に対処するために、Ansethらは、ヒドロゲ ルの物理的性質と化学的性質を独立して制御できる、明確に定義 された架橋ヒドロゲルの合成が可能な手法を開発しました12-14。 この方法は基本的に「オルトゴナル化学(orthogonal chemistry)」を利用しており、1つの化学反応をヒドロゲル網目構 造の生成に使用し、2番目の化学反応を生物活性要素のパターニ ングに使用します。さらに、光解離性結合をヒドロゲル網目構造 内に導入することによって、追加した生物活性信号をいつでも除 去することが可能です14。

上に述べた2Dと3Dのパターニング方法を組み合わせると、生体 材料の性質とその生物学的機能に与える影響との間の動的な関係 を制御した状態で研究できます。これらのパターニングされた足 場を使用した研究によって、細胞の挙動に関する理解が進み、再 生医学用途向け足場材料の性質を合理的に設計できるようになる と考えられます。

謝辞

パターニングされたゲル中の細胞移動の画像(図2)のほか、共焦 点レーザースキャニングパターンや2光子レーザースキャニング パターンの画像またはレンダリング処理画像(図3)を提供してい ただいた Jennifer West 博士に感謝します。

References

- (1) Gombotz, W. R.; Wang, G. H.; Horbett, T. A.; Hoffman, A. S. J. Biomed. Mater. Res. 1991, 25, 1547-62.
- (2) West, J. L.; Hubbell, J. A. Biomaterials 1995, 16, 1153-1156.
- (3) Hill-West, J. L.; Chowdhury, S. M.; Slepian, M. J.; Hubbell, J. A. Proc. Natl. Acad. Sci. USA **1994**, *91*, 5967-71.
- (4) Lu, Y.; Mapili, G.; Suhali, G.; Chen, S.; Roy, K. J. Biomed. Mater. Res., Part A 2006, 77A, 396-405.
- (5) Luo, Y.; Shoichet, M. Nat. Mater. 2004, 3, 249-253.
- (6) Arcaute, K.; Mann, B.; Wicker, R. Acta Biowmater. 6, 1047-1054.
- (7) Koh, W.-G.; Pishko, M. Anal. Bioanal. Chem. 2006, 385, 1389-1397.

- (8) Liu, V. A.; Bhatia, S. N. Biomed. Microdevices 2002, 4, 257-266.
- (9) Hahn, M.; Miller, J.; West, J. Adv. Mater. 2005, 17, 2939-2942.
- (10) Hahn, M. S.; Taite, L. J.; Moon, J. J.; Rowland, M. C.; Ruffino, K. A.; West, J. L. Biomaterials 2006, 27, 2519-2524.
- (11) Hahn, M. S.; Miller, J. S.; West, J. L. Adv. Mater. 2006, 18, 2679-2684.
- (12) Polizzotti, B. D.; Fairbanks, B. D.; Anseth, K. S. Biomacromolecules 2008, 9, 1084-1087.
- (13) DeForest, C. A.; Polizzotti, B. D.; Anseth, K. S. Nat. Mater. 2009, 8, 659-664.
- (14) Kloxin, A. M.; Kasko, A. M.; Salinas, C. N.; Anseth, K. S. Science 2009, 324, 59-63.
- (15) Maruo, S.; Nakamura, O.; Kawata, S. Opt. Lett. 1997, 22, 132-134.
- (16) Kuebler, S.; Braun, K.; Zhou, W.; Cammack, J.; Yu, T.; Ober, C.; Marder, S.; Perry, J. J. Photochem. and Photobiol., A 2003, 163-170.

181994-500G

ポリエチレングリコール

PEGおよびPEOの製品リストはsigma-aldrich.com/polymer-jpをご覧ください。

Oligo and Poly(ethylene glycol)

α-end	ω-end	Molecular Weight	Structure	CAT. NO.
ОН	ОН	194.23	HO~~O~~OH	110175-100G 110175-1KG 110175-3KG 110175-20KG
ОН	ОН	238.28	HOCH ₂ CH ₂ (OCH ₂ CH ₂) ₄ OH	335754-5G 335754-25G
ОН	ОН	282.33	H (O)	259268-5G 259268-25G
ОН	ОН	average M _n 300	н∱о∽∱он	202371-5G 202371-250G 202371-500G 202371-1KG 202371-20KG
OH	ОН	average M _n 400	н [0~] _п он	202398-5G 202398-250G 202398-500G 202398-20KG
OH	ОН	average M _n 600	н [0~] _п он	202401-5G 202401-250G 202401-500G 202401-500G 202401-20KG
OH	ОН	mol wt range 1400-1600	н∱о∽у ^ч он	81210-1KG 81210-5KG
ОН	ОН	average M _n 2050	н∱о∽учон	295906-5G 295906-250G 295906-500G
ОН	ОН	average M _n 3,350	н [о~] пон	202444-250G 202444-500G
ОН	ОН	average M _n 4,000	н [о пон	81240-1KG 81240-5KG
ОН	ОН	average M _n 6,000	н [о~] пон	81260-1KG 81260-5KG
ОН	ОН	average M _v ~8,000	н∱о∕удон	202452-5G 202452-250G 202452-500G
ОН	ОН	average M _n 10,000	н [о~] _{ион}	309028-250G 309028-500G
ОН	ОН	average M _n 14,000	н [о пон	637726-100G 637726-1KG
ОН	ОН	average M _n 20,000	н [о~] _{ион}	81300-1KG 81300-5KG
ОН	ОН	average M _n 35,000	н [о~] _{ион}	81310-1KG 81310-5KG
ОН	ОН	average M _v 100,000	н∱о∽учон	181986-5G 181986-250G 181986-500G
ОН	ОН	average M _v 200,000	н Го Дон	181994-5G 181994-250G 181994 500G

sigma-aldric

α-end	ω-end	Molecular Weight	Structure	CAT. NO.
ОН	ОН	average M _v 400,000	н {o }_n OH	372773-5G 372773-250G 372773-500G
ОН	ОН	average M, 600,000	H To hoH	182028-5G 182028-250G 182028-500G

Monofunctional PEGs

α-end CH ₃	ω-end OH	Molecular Weight average M _n 550	Structure	CAT. NO. 202487-5G
CH ₃	ОН	average M _n 750	H ₃ C {0 } OH	202495-250G 202495-500G
CH ₃	ОН	average M _n 5,000	H ₃ C {0 } OH	81323-250G 81323-1KG
CH ₃	ОН	average M _w 2,000	H ₃ C O OH	81321-250G 81321-1KG
CH ₃	ОН	M _n 10,000	H ₃ C (0)OH	732621-5G 732621-25G
CH ₃	ОН	M _n 20,000	H ₃ C O OH	732613-5G 732613-25G
CH3	Tosylate	M _n 1,000	$H_{3}C \bigcirc 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	729116-5G
CH3	Tosylate	M _n 2,000	$H_{3}C \xrightarrow{\bigcirc} 0 \xrightarrow{0} \xrightarrow{0} 0 \xrightarrow{0} \xrightarrow{0} 0 \xrightarrow{0}$	729124-5G
CH ₃	Tosylate	M _n 5,000		729132-5G
CH3	Maleimide	M _n 2,000	$H_{3}CO\left[-\sqrt{2}\right]_{n}$	731765-1G 731765-5G
CH3	SH	M _n 1,000	H ₃ CO [~~O]_n SH	729108-1G 729108-5G
CH3	SH	M _n 2,000	H ₃ CO [~~O]SH	729140-1G 729140-5G
CH ₃	SH	M _n 5,000	H ₃ CO [~~O]_nSH	729159-1G 729159-5G
CH3	Acetylene	average M _n 2,000	H ₃ C $- O$ $C \equiv CH$	699802-500MG
CH ₃	Acrylate	average M _n 2,000	$H_2C \underbrace{\downarrow}_{n=8-9} O \underbrace{\downarrow}_{n=1} CH_3$	730270-1G
CH ₃	Acrylate	average M _n 5,000	$H_2C \xrightarrow{O} I $	730289-1G
CH3	Methacrylate	average M _n 300	$H_2C \underset{CH_3}{\overset{O}{\longrightarrow}} O \underset{n}{\overset{O}{\longrightarrow}} CH_3$	447935-100ML 447935-500ML

α-end	ω-end	Molecular Weight	Structure	CAT. NO.
CH₃	Methacrylate	average M _n 475	H_2C H_3C H_3CH_3	447943-100ML 447943-500ML
CH₃	Methacrylate	average M _n 950	$H_2C \downarrow 0 \\ CH_3 O - CH_3$	447951-100ML 447951-500ML
CH3	Methacrylate	average M _n 2,000	$H_2C \downarrow 0 \\ CH_3 \\ CH_$	730319-1G
CH3	Methacrylate	average M _n 5,000	$H_2C \xrightarrow{O}_{CH_3}O \xrightarrow{O}_nCH_3$	730327-1G

Homobifunctional PEGs

α-end	ω-end	Molecular Weight	Structure	CAT. NO.
NH ₂	NH ₂	M _w 2,000	$H_2N\left[\begin{array}{c} & O \\ & \end{array} \right]_n NH_2$	14501-250MG 14501-1G
NH ₂	NH ₂	M _w 3,000	$H_2N\left[-\sqrt{O} \right]_n NH_2$	14502-250MG 14502-1G
NH ₂	NH ₂	M _w 6,000	$H_2N\left[-\sqrt{0}\right]_nNH_2$	14504-250MG-F 14504-1G-F
NH ₂	NH ₂	M _w 10,000	$H_2N\left[-\sqrt{0}\right]_nNH_2$	14508-1G
NH ₂	NH ₂	M _w 20,000	$H_2N\left[-\sqrt{O} \right]_n NH_2$	14509-1G-F
NH ₂	NH ₂	M _n ~2,100	H_2N N_n NH_2	452572-1G 452572-5G
СООН	СООН	average M _n 250	но у бо у он	406996-100G
СООН	СООН	average M _n 600	но состо он	407038-250ML 407038-1L
SH	SH	M _n 900-1,100 average M _n 1,000	HS	717142-1G
SH	SH	M _n 1,350-1,650 average M _n 1,500	HS∽↓O∽┤₅SH	704369-1G
SH	SH	M _n 3,060-3,740 average M _n 3,400	HS∽↓O∽↓nSH	704539-1G
SH	SH	average M _n 8,000	HS√↓0√↓nSH	705004-1G
Tosylate	Tosylate	average M _n 1,300		719080-5G
Tosylate	Tosylate	average M _n 1,800	$H_3C - \swarrow - \bigcirc_{i=1}^{Q} - O_{i=1}^{Q} - O_{$	704458-5G
Tosylate	Tosylate	average M _n 3,500	$H_3C - \swarrow - \bigcirc - \bigcirc$	701750-5G
Tosylate	Tosylate	average M _n 10,000		705047-5G

PEG 構造を基盤としたヒドロゲルを用いたパターニング — 空間的複雑さの設計

a-end	(u-end	Molecular Weight	Structure	CAT NO
Acrylate	Acrylate	average M _n 258	$H_2C = \int_n^{Q} \left[O - \int_n^{Q} CH_2 \right]$	475629-100ML 475629-500ML
Acrylate	Acrylate	average M _n 575	$H_2C = \left[O - \int_n^O O CH_2 \right]$	437441-100ML 437441-500ML
Acrylate	Acrylate	average M _n 700	$H_2C = \left[O - \int_n^O O CH_2 \right]$	455008-100ML 455008-500ML
Acrylate	Acrylate	average M _n 2,000	$H_2C = \bigcup_{n=1}^{C} \left[O - \int_{n}^{O} \int_{n}^{O} CH_2 \right]$	701971-1G
Acrylate	Acrylate	average M _n 6,000	$H_2C = \int_{n}^{0} \int_{n}^{0} CH_2$	701963-1G
Acrylate	Acrylate	average M _n 1,000	$H_2C = \int_{n}^{0} \int_{n}^{0} CH_2$	729086-1G
Acrylate	Acrylate	average M _n 10,000	$H_2C = \left[O - \int_n^O O CH_2 \right]$	729094-1G
Methacrylate	Methacrylate	average M _n 550	$\begin{array}{c} O\\ H_2C \\ \\ CH_3\\ CH_3 \end{array} \\ O \\$	409510-250ML 409510-1L
Methacrylate	Methacrylate	average M _n 750	$\begin{array}{c} O\\ H_2C \\ \\ CH_3 \\ CH_3 \\ \end{array} \\ O \\ O$	437468-250ML 437468-1L
Methacrylate	Methacrylate	average M _n 2000	$\begin{array}{c} O\\ H_2C \swarrow \\ CH_3\\ CH_3 \end{array} O \begin{array}{c} O\\ O\\ O\\ O \end{array} O \begin{array}{c} CH_3\\ CH_2\\ CH_2 \end{array}$	687529-1G
Methacrylate	Methacrylate	average M _n 6000	$\begin{array}{c} O\\ H_2C \swarrow \\ CH_3\\ CH_3 \end{array} O \begin{array}{c} O\\ O\\ O\\ O\\ O \end{array} \right) O \begin{array}{c} CH_3\\ CH_2\\ CH_2 \end{array} O CH_2$	687537-1G
Methacrylate	Methacrylate	average M _n 20,000	$\begin{array}{c} O\\ H_2C \\ H_3 \\ CH_3 \\ CH_3 \\ CH_2 \\ CH_2 \\ CH_2 \end{array}$	725692-1G
Methacrylate	Methacrylate	average M _n 10,000	$\begin{array}{c} O\\ H_2C \swarrow \\ CH_3 \end{array} \\ O & O \\ CH_2 \end{array} \\ O & O \\ O$	725684-1G
Acrylamide	Acrylamide	average M _n 3,500	$H_2 C_{\text{res}} \overset{\text{def}}{\longrightarrow} H_2 \text{de$	725676-1G
Vinyl	Vinyl	average M _n 240	$H_2C \sim 0 \sim n$	410195-5ML 410195-25ML
Acetylene	Acetylene	average M _n 2,000	HC=COOC=CH	699810-500MG
Glycidyl	Glycidyl	average M _n 526	$\nabla \mathcal{O} \left(\mathcal{O} \right)^{n} \nabla$	475696-100ML 475696-500ML

ALDRICH[®] Materials Science

デバイス/組織境界面のエンジニアリングに使用される 共役ポリマー

David C. Martin^{*}, Laura K. Povlich, and Kathleen E. Feldman Department of Materials Science and Engineering The University of Delaware Newark, DE 19716 *Email: milty@udel.edu

はじめに

有用なバイオメディカル(生物医学)デバイスと生体組織との間を 橋渡しする上で、電子的およびイオン的に活性な共役ポリマーの 開発に大きな関心が持たれています16。共役ポリマーによって、 電気伝導性を持つ無機金属とプロトン伝導性を持つ有機生体シス テムの間の電荷移動が可能となるためです。これらの材料は、蝸 牛(かぎゅう)、網膜、皮膚インプラントなどの各種バイオニック デバイスだけでなく、ペースメーカーやグルコースセンサーにも 役立つ可能性をもっています7。検討されている材料の候補とし ては、ポリピロール(Ppy)や、機能性ポリチオフェンであるポリ (3,4-エチレンジオキシチオフェン) (PEDOT) などがあり 8-10、電 気化学的重合法によって金属電極の表面に直接固定させることが できます11-13。共役ポリマーは従来の金属ほどの導電性(電気的活 性)を持っていませんが、生物学的に重要な周波数範囲(1000 Hz 付近)におけるバイオメディカルデバイスの電気インピーダンス を大幅に低下することのできる、柔軟性のある高表面積膜を作製 することが可能です12-14。この周波数は、神経信号の代表的なパル ス幅(約1~2ms)に相当します¹⁵。

導電性ポリマーを用いて微細加工されたバイオメディカルデバイ スの例として、シリコンを基板とした皮膚電極の模式図を図1a に示します¹⁶。電極の先端部分に直径約40μmのPEDOTコー ティング(青色)を行っています。図1bは、電極部位の1つに PEDOTコーティング(白色)を行った電極の実際の画像です。図 1cは、デラウェア大学の筆者らの研究室で作製した、厚さ約1μ mの電気化学的にPEDOTコーティングをした試料の断面SEM画 像です。

PEDOTは、PPyと比較して化学的にはるかに安定であることが明 らかですが、おそらく、後者の安定性が劣るのはジエトキシ置換 基が過剰の水素原子を置き換える結果、PPy中に合成欠陥が生じ るためであると考えられます^{17,18}。また、ペンダント型PEDOT酸 素原子の電子供与性によって、分子の導電性も改善されます。こ のPEDOTとほとんどの動植物が合成する天然の黒色着色分子で あるメラニン(図2)との間の顕著な化学的類似性が注目されてい ます。

バイオメディカルデバイスに用いるためにPEDOTなどの化合物の性能をさらに改善するには、2つの重要な境界面、すなわち、 (1)固体金属基板と共役ポリマーとの間の結合、(2)共役ポリマーと生体組織との間の結合、にも注目する必要があります。いずれ

図1(a)導電性ポリマーをコーティングした領域(青色)が集積化された超 微細バイオメディカルデバイスの模式図。(b)電極の複数の部分にPEDOT コーティング(青色)を行ったバイオメディカル電極の実際の画像。(c)筆者 らの研究室で作製したバイオメディカルデバイスの断面SEM画像。金属電 極を覆う厚さ約1μmのPEDOT層を示しています。このSEM画像は、オレ ゴン州ヒルズボロのFEI社研究所(*fei.com*)で、Helios NanoLab収束イオン ビーム(FIB)装置を用いて得られたものです。

図2(a)共役主鎖により紫外光を吸収する天然の共役ポリマー色素である メラニンの繰り返し単位。(b)合成 PEDOT ポリマーの化学構造。メラニン との類似性を赤色と緑色で強調してあります。

の場合も、2つの異なる材料間において接着性に優れた化合物が 有用であると考えられます。ここでは、これら材料の境界面の性 質について検討し、この2つの境界面において非常に重要な官能 基化共重合体の作製に使用される、いくつかのモノマーについて 説明します。

金属-ポリマー境界面

共役ポリマーと金属との境界面の機械的強度と信頼性は、バイオ メディカルデバイスの設計において特に重要です。金属へのポリ マーの接着性は、金属の表面処理、ポリマーの固定化方法、および その反応中に用いる対イオンによって左右されます¹⁹²⁰。ポリ マーコーティングを基板に可能な限り強く結合させるために、ポ リマーと金属表面との相互作用が強化されうる分子設計に注目が 集まっています。このような化学設計によって、金属とポリマー、 さらに最終的には周囲の電解質との間での効率的な電荷移動を維 持することが重要となります。

16

m / jap

0 0

۔ ع

sigma-aldric

バイオメディカルデバイスに使用される代表的な金属には、金、 白金-イリジウム合金、ステンレススチールなどがあります。金 属が用いられるのは、耐腐食性とin vivoでの安定性のためです。 ポリマーと金属の接着性を改善する1つの方法は、対象となる金 属表面と特異的に結合するように設計されたペンダント基を持つ 官能基化共役モノマーの合成です²¹。たとえば、チオールもしくは 酸で官能基化されたモノマー(図3)を使用してチオフェンが共有 結合した薄膜を作製した後、この膜を利用して導電性ポリマー膜 の厚い層を得ることができます。官能基化モノマーは、金属-ポ リマー境界面において接着促進剤として選択的に使用することも できるため、デバイス設計に必要な材料の総量を削減することが できます。

図3 (a)EDOT(Aldrich製品番号483028)の化学構造、およびポリマーと 金属境界面における接着促進に利用可能な2つのモノマーの化学構造。 (b)EDOT-Acid。(c)EDOT-Thiol。

ポリマー-組織境界面

電気化学的にも重合可能な、ピロールやチオフェンの官能基化モノマーを化学設計によって合成することができます²²。水の表面 ぬれ角(40~80°)が精密に制御された、さまざまな組成の修飾 PEDOT薄膜が、アルコール、酸、およびアミン官能基を持つEDOT モノマーを使用して作製されています²³。我々は、幅広いバイオ機 能を持つことが期待されるEDOTカルボン酸誘導体を見出しまし たが、この化合物を実用的な量にスケールアップして合成するの はやや難しいことが明らかになっています^{21,24}。そこで、よりプロ セス加工性の高い方法として、**図4**にアジド-アルキン付加環化、 すなわち「クリック」反応が可能なアルキン基をペンダント基に使 用した合成法を示します²⁵⁻²⁷。

図4「クリック」ケミストリーを利用して、より官能基化されたアルキン置換ProDOTモノマーの化学構造。枠内は、RGDで官能基化されたProDOTモノマーを示しています。

共役ポリマーと組織との境界面において、細胞や細胞外マトリックスと特異的な相互作用の可能な、官能基化チオフェンモノマーの利用も考えられます。たとえば、細胞上の受容体に強く結合することが知られているペプチド配列など、生物学的に活性なペンダント基を用いてチオフェンを機能化できる可能性があります(図4)。その例には、広く研究されているフィブロネクチンのRGDペプチド配列や、ラミニンの(Ile-Lys-Val-Ala-Val) IKVAV配列、Tyr-Ile-Gly-Ser-Arg(YIGSR、Sigma製品番号T7154)配列があります²⁸⁻³⁰。

天然メラニンに類似した構造の化合物にも注目が集まっています。我々が最近検討した1つの例は5,6-dimethoxyindole-2-carboxylic acid(DMICA)で、これは、PEDOTと似た方法で容易に

固定化することのできるメラニンのメトキシ誘導体です³¹。得られるポリマーであるPDMICAは、結晶質で天然メラニンには見られないオリーブグリーン色を呈します。さらに、エレクトロクロミック特性も持つため、電圧に応じて、緑色、紫色、透明へと変化します。

今後の可能性

官能基化チオフェンモノマーを用いることで、意図した構造と性 質を持つ新規共役ポリマーを溶液重合によって合成できる可能性 も持っています。たとえば、繊維やセンサーとして使用できる完 全に可溶性の共役ポリマーの作製があります。溶液紡糸またはエ レクトロスピニングによってこれらの材料の配向性集合体を作製 できれば、応用に用いた際の特性を把握し、最適化することがで きるようになると考えられます。

謝辞

David C. Martin は、Biotectix社の共同創立者兼最高技術責任者 です。同社(*biotectix.com*)はミシガン大学のスピンオフ企業で、 各種生物医学装置と生体組織との界面に用いられる共役ポリマー 材料について積極的に研究を行っています。**図1c**に示した PEDOT 膜は、Bong Sup Shim 博士によって作製されたものです。 本研究の一部は、米国国立衛生研究所(National Institutes of Health)、米国国立科学財団(National Science Foundation)、お よび米国陸軍研究所(Army Research Office)のMURIイニシアチ ブ「Biointegrating Structural and Neural Prosthetic Materials (W911NF-06-1-0218)」の支援を受けて行われました。

References

- (1) Berggren, M.; Richter-Dahlfors, A. Adv. Mater. 2007, 19, 3201-3213.
- (2) Guimard, N. K.; Gomez, N.; Schmidt, C. E. Prog. Polym. Sci. 2007, 32, 876-921.
- (3) Wallace, G. G.; Spinks, G. M. Soft Matter. 2007, 3, 665-671.
- (4) Kotov, N. A.; Winter, J. O.; Clements, I. P.; Jan, E.; Timko, B. P.; Campidelli, S.; Pathak, Sm.; Mazzatenta, A.; Lieber, C. M.; Prato, M.; Bellamkonda, R. V.; Silva, G. A.; Kam, N. W. S.; Patolsky, F.; Ballerini, L. Adv. Mater. **2009**, *21*, 3970-4004.
- (5) Owens, R. M.; Malliaras, G. G. MRS Bulletin 2010, 35, 449-456.
- (6) Poole-Warren, L.; Lovell, N.; Baek, S.; Green, R. *Expert Rev. Med. Devices* 2010, 7, 35-49.
 (7) Kim, D.-H.; Richardson-Burns, S. M.; Povlich, L. K.; Abidian, M.; Spanninga, S.;
- Hendricks, J. L. 2007, W. M. Reichert (Ed.), Indwelling Neural Implants: Strategies for Contending with the In-Vivo Environment. Boca Raton, FL: Taylor and Francis
 Schmidt, C. E.; Shastri, V. R.; Vacanti, J. P.; Langer, R. Proc. Natl. Acad. Sci. USA 1997, 94,
- (a) Schmidt, C. E., Shastir, V. N., Vacahti, J. F., Langer, N. Froc. Watt. Acad. Sci. USA 1997, 94, 8948-8953.
- (9) Shastri, V. R.; Schmidt, C. E.; Langer, R. S.; Vacanti, J. P. 2000, Children's Medical Center Corporation Massachusetts Institute of Technology, USA
- (10) Xiao, Y.; Cui, X.; Martin, D. C. J. Electroanal. Chem. 2004, 573, 43-48.
- (11) Groenendall, L. B.; Jonas, F.; Freitag, D.; Pielartzik, H.; Reynolds, J. R. Adv. Mater. 2000, 12, 481-494.
- (12) Cui, X.; Hetke, J. F.; Wiler, J. A.; Anderson, D. J.; Martin, D. C. Sens. Actuators, A 2001, 93, 8-18.
- (13) Cui, X.; Lee, V. A.; Raphael, Y.; Wiler, J. A.; Hetke, J. F.; Anderson, D. J. J. Biomed. Mater. Res. 2001, 56, 261-272.
- (14) Yang, J.; Martin, D. C. J. Mater. Res. 2006, 21, 1124-1132.
- (15) Kandel, E. R.; Schwartz, J. H.; Jessell, T. M. 2000, Principles of Neural Science. New York, NY: Mc-Graw-Hill
- (16) Specific examples of such devices can be viewed at neuronexustech.com.
- (17) Yamato, H.; Ohwa, M.; Wernet, W. J. Electroanal. Chem. **1995**, 397, 163-170.
- (18) Cui, X.; Martin, D. C. Sens. Actuators, B 2003, 89, 92-102.
- (19) Cui, X. 2002, Surface Modification of Neural Prosthetic Devices by Conducting Polymers and Biopolymers. The University of Michigan, Ann Arbor, MI
- (20) Cui, X.; Martin, D. C. Sens. Actuators, A 2003, 103, 384-394.
- (21) Povlich, L. K.; Cho, J. C.; Spanninga, S.; Martin, D. C.; Kim, J. Polym. Prepr. 2007, 48, 7-8.
 (22) Groenendaal, L. B.; Zotti, G.; Aubert, P.-H.; Waybright, S. M.; Reynolds, J. R. Adv. Mater. 2003, 15, 855-879.
- (23) Luo, S.-C.; Ali, E. M.; Tansil, N. C.; Yu, H.-h.; Gao, S.; Kantchev, E. A. B. Langmuir 2008, 24, 8071-8077.

- (24) Kim, J.; Cho, C.; Povlich, L. K.; Martin, D. C. **2010**, Carboxylic Acid-Modified EDOT for Bioconjugation. U.S. Patent No 7,708, 908 B2. University of Michigan Ref. No. 3540, Harness Dickey & Pierce PL.C. Ref. No. 2115-2003540/PS1. Filed February 28, 2008
 (25) Sahoo, R.; Mishra, S. P.; Kumar, A.; Sindhu, S.; Rao, K. N.; Gopal, E. S. R. *Opt. Mater.*
- 2007, 30, 143-145.
 (26) Kumar, A.; Mishra, S. P. 2006, Novel 3,4-Propylenedioxythiophene Derivatives with
- Pendant Functional Groups. Indian Institute of Technology Bombay, India
- (27) Sinha, J.; Sahoo, R.; Kumar, A. Macromolecules 2009, 42, 2015-2022.
- (28) Rouslahti, E. Annu. Rev. Cell Dev. Biol. 1966, 12, 697-715.
- (29) Sephel, T. C.; Tashiro, K.-I.; Sasaki, M.; Greatorex, D.; Martin, G. R.; Yamada, Y.; Kleinman, H. K. Biochem. Biophys. Res. Commun. 1989, 102, 821-829.
- (30) Ranieri, J. P.; Bellamkonda, R.; Bekos, E. J.; Vargo, T. G.; Gardella, J. A.; Aebischer, P. J. Biomed. Mater. Res. 1995, 29, 779-785.
- (31) Povlich, L. K.; Le, J.; Kim, J.; Martin, D. C. Macromolecules 2010, 43, 3770-3774.

デバイス/組織境界面のエンジニアリングに使用される共役ポリマー

sigma-aldrich.com/japan

ポリピロール(PPy)はポリチオフェンと比較して低い酸化電位を持ち、電池や化学センサー、イオン選択性電極などの表面に容易に固定 させることができます。また、ポリピロールは生体適合性を示し、生物電気化学やバイオセンサーの研究分野で利用されています。 導電性ポリマーの最新情報は*sigma-aldrich.com/organicelectronics-jp*をご覧ください。

Pyrrole Monomers

Name	Structure	Purity	CAT. NO.
Pyrrole	<i>K</i> ∼ N H	98%	131709-25ML 131709-100ML 131709-500ML
1H-Pyrrole-1-propionic acid	N O OH	97%	687545-1G
4-(3-Pyrrolyl)butyric acid	N N OH	95%	682578-100MG 682578-500MG
11-(1 <i>H-</i> pyrrol-1-yl)undecane-1-thiol	⟨ <mark>`</mark> ⟩ CH₂(CH₂)₀CH₂SH	96%	717223-1G
3,4-Ethylenedioxypyrrole	° ↓ ∑ × H	2 % (w/v) in THF	648310-2ML 648310-10ML
3,4-Propylenedioxypyrrole	°∕∼ ₽	2 % (w/v) in THF	648329-2ML 648329-10ML

Thiophene Monomers

Name	Structure	Purity	CAT. NO.
Thiophene	$\langle \mathbf{s} \rangle$	≥99%	T31801-5G T31801-100G T31801-500G
3,4-Dimethoxythiophene	H ₃ CO_OCH ₃	97%	668257-5G
3,4-Ethylenedioxythiophene	o ↓ S	97%	483028-10G
Hydroxymethyl EDOT	O OH	95%	687553-500MG
EDOT carboxylic acid	O OH	-	729167-500MG
3,4-Propylenedioxythiophene	° Contraction of the second se	97%	660485-100MG 660485-500MG
3,4-(2,2-Dimethylpropylenedioxy)thiophene	H ₃ C _C CH ₃	97%	660523-500MG
3,4-(2',2'-Diethylpropylene)dioxythiophene	H ₃ C-CH ₃	97%	669210-250MG

導電性ポリマー

Polypyrroles

Name	Structure	Conductivity	CAT. NO.
Polypyrrole doped	$\left[\left(\underbrace{}{\underset{H_2}{}} \right)_n \right] \cdot X \text{ organic acid anion}$	> 0.0005 S/cm (dried cast film)	482552-100ML
Polypyrrole	$\left[\left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	0.5-1.5 S/cm (pressed pellet, typical)	578177-10G
Polypyrrole	$\left[\left\{ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	~ 8.5 S/cm	577065-10G
Polypyrrole	$\begin{array}{c} \overbrace{ \begin{pmatrix} \ddots \\ N \\ H_2 \end{pmatrix}_n} & \cdot X \text{ organic acid anion} \end{array}$	10-40 S/cm	577030-5G 577030-25G
Polypyrrole	$\left[\begin{pmatrix} & & \\$	30 S/cm (bulk)	530573-25G

Polythiophenes

sigma-aldrich.com/japan

歯科用修復材料開発の進展

Jeffrey Stansbury^{1*} and Christopher Bowman² ¹Department of Chemical and Biological Engineering Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Boulder, CO 80045-0508 ²Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309-0424 *Email: jeffrey.stansbury@colorado.edu

はじめに

歯科医師が患者の歯に使用する充填材の数は米国だけでも年間1 億個近くになり、ポリマーコンポジット材料を用いた修復材は生 体材料の市場で極めて大きな割合を占めています。この着色され たコンポジット材料は、主として液体モノマーと表面処理された 粒状の無機フィラーからなり、重合によって、天然の歯と見分け が付かないほどの外観を再現することができます。この自然な外 観は患者にとって魅力的である一方、ポリマーコンポジット材は 歯質とエナメル質のいずれにも接着することが可能なため、アマ ルガム系修復材の実用的な代替品です。現在使用されている歯科 用コンポジットのマトリックス材料は、大部分がジメタクリラー トモノマーをベースとするものです。広く使用されている嵩高い 芳香族ジメタクリラートモノマーの中での代表的な例は、2,2-bis [*p*-(2'-hydroxy-3'-methacryloxypropoxy)phenyl] propane (BisGMA)(Aldrich製品番号494356)であり、Bowenによって 歯科用コンポジット材専用に開発された物質です¹。

嵩高いBisGMAモノマーは、分子間水素結合による強い相互作用のために粘性が極めて高く、中でもurethane dimethacrylate (Aldrich製品番号436909)、ethoxylated bisphenol A dimethacrylate(BisEMA、Aldrich製品番号455059)、 triethylene glycol dimethacrylate(TEGDMA、Aldrich製品番号 261548)などの粘性が低いコモノマーと一般的に併用されます²。 また、一般に可視光(波長400~500 nm)によって、 camphorquinone(Aldrich製品番号124893)などの適切なラジ カル光開始剤とともにethyl dimethylaminobenzoate(Aldrich 製品番号E24905)、2-(dimethylamino)ethyl methacrylate (Aldrich製品番号234907)などの第三級アミン光還元剤を使用 して効率的で迅速な光重合を行うことができます³⁵。この他に、 ビスアシルホスフィンオキシド、チタノセン、ゲルマニウム系化 合物などの開始剤も報告されています。⁶⁷

コンポジット修復材

歯科用コンポジット材であるガラス-セラミックス充填材は一般 的にはアルミノケイ酸系の材料であり、バリウム、ストロンチウ ム、ジルコニウムなどの重金属酸化物を含有し、X線が透過しませ ん⁸。充填材の粒子は、約0.1 ~ 10 µmの粉末ガラスから約20 ~ 50 nmの熱分解法またはゾルゲル法によるシリカやその他のナ ノ材料までさまざまタイプが存在します。有機シラン、主として

methacryloxypropyltrimethoxysilane(Aldrich製品番号

440159)は、充填材とポリマーマトリックスとの間の共有結合に 必要なカップリング剤として使用されます。高弾性の強化充填材 をレジンマトリックスの中に高い比率(70~90重量%もしくは 30~55体積%)で組み込むには、異なる粒径の充填材粒子とシラ ン表面処理の組み合わせが用いられます(図1)。歯科用コンポ ジット材に含まれる充填材が多くなると、弾性、強度、耐摩耗性、 靱性が増すとともに熱膨張が小さくなります。充填材成分によっ て、液体モノマーから高度に架橋したガラス質ポリマーマトリッ クスへの反応の際に起きる重合収縮も抑制されます。このin situ での重合は、周囲の歯牙構造にうまく適合した修復を行うために 必要な条件です。

図1 研磨した歯科用コンポジット材の走査型電子顕微鏡写真。ポリマーマトリックス中に埋め込まれた不規則な大きさの無機粒子が見られます。

ロ腔内での処置の場合、修復材の硬化に利用できる光重合の条件 に制約があるため、材料の選択が極めて重要になります。この特 有の環境のために、高性能かつ審美性の高いコンポジット材に は、室温で変換率が高い迅速な重合反応の開発が必要です。得ら れる修復材は、多数回のそしゃく繰り返し応力(咀嚼応力)だけで なく、食物や飲料の摂取による温度変動をはじめとする水性環境 への曝露にも耐え得るものでなければなりません。歯に対するコ ンポジット材の接着力は、表面を脱灰して重合可能な接着層との 強力なマイクロメカニカル的結合を可能にする、歯質とエナメル 質の酸エッチングに依存します。この接着層は、歯の中で比較的 親水性である歯質と、はるかに疎水性の修復用コンポジット材と の遷移層の役割を果たします。

修復用コンポジットの収縮と応力

コンポジット材の重合部分へ結合面が押し付けられる際に(歯の 修復には必ず行われます)、自由な収縮が制約されて大きな内部応 力と外部応力が発生します(図2a)。この応力によって、(a)歯の たわみ(歪み)、(b)接着部分の不具合、(c)充填材-マトリック ス境界面または隣接するエナメル質におけるポリマーマトリック ス内部の欠陥形成、などの問題が生じる可能性があります¹⁰。歯と 修復材との境界面において信頼性の高い長期安定性を得るため に、産学の研究室にて、優れた新材料の研究開発プロジェクトが 進められています。重合収縮と応力に関する研究は歯科用ポリ マーのみならず、コーティング、接着剤、封止剤、非球面レンズ、 フォトリングラフィーなど、その他の工業用途でも利用可能です。

応力は歪みと弾性の積(σ = ε × E)で定義されます。ここで、 σは応力、εは歪み、Eはヤング率です。重合したコンポジット材 料中でガラス質ポリマーが形成される際の応力成長が大きな問題

歯科

用修復材料開発の

進展

図2 (a)結合表面に関連した収縮が重合中に制約を受けることで、重合試料中に大きな応力が成長します。(b)近赤外分光スペクトルにおけるメタクリル基 の=CH2結合バンドを指標にして、重合中のBisGMA/TEGDMAモノマーの反応速度と変換率をモニターすることができます。4745 cm⁻¹のグレーの矢印は モノマーの消費、つまり重合反応が進んでいることを示しています。**(c)**さまざまな濃度の2,2-dimethoxy-2-phenylacetophenone(DMPA、**Aldrich 製品番** 号196118)を用いて光重合を行った際の、TEGDMAの変換率に対する体積重合収縮率(VS:volumetric polymerization shrinkage)の非線形で動的な変化 を表したグラフ。熱膨張/収縮の影響とガラス状態における収縮の遅れが見られます。このグラフから、モノマー変換率が約0.45のときにガラス状態が始 まっていることが分かります。

となります。したがって、応力/歪みに関する問題の解決の前に、 収縮歪みの発生と弾性率の基本を理解することが不可欠です。収 縮歪みと弾性率の値は、コンポジット材料の非等温的な光重合反 応における温度変化に加えて、重合の程度によっても決まりま す。ジメタクリラートモノマーは、硬化温度より高いガラス転位 温度にてポリマー網目構造を形成しますが、これは通常、完全に 硬化したポリマー内でメタクリル基がかなりの割合で未反応のま ま残ることを意味します11。

光重合中に、モノマーからポリマーへの変換が進むにつれて、液 体モノマーはゲル化、ゴム状態、およびガラス化(ガラス状態への 遷移)の段階を経て架橋ポリマーに変化します。リアルタイム近 赤外分光法を使用することで、光重合反応中の重合の反応速度と 変換率をモニターすると同時に、体積収縮、弾性率、または応力を 動的に測定する同時解析手法が開発されています(図2b)10,12。こ れらの方法により、重合中の熱変化および、ガラス状ポリマー状 態における重合反応と比較した収縮速度の低下のために、収縮率 は変換率に対して非線形であることが明らかになっています。弾 性率と応力の増大は、変換反応の後半とガラス化が始まる段階に 集中していることが分かりました(図2c)。この結果に加えて、ポ リマーの変換率または弾性率のいずれを制限しても応力は低下し ないという仮定との両方に基づいた、低い応力の歯科用ポリマー を作製するための実用的な可能性を持つ最新の手法がいくつか存 在します。

嵩高いモノマーの設計

重合収縮の問題に対して考えられる1つの解決策には、歯科用コ ンポジット材のためにカスタマイズされた新規モノマーや反応性 オリゴマーの開発があります。反応性基の初濃度を低くすると、 一般に弾性率が低下しますが、ポリマー網目構造内の架橋密度も 低下します。これを回避するには、たとえば、反応性基の初濃度は 低くても、共有結合性の架橋結合密度の低さを補強する特性を 持った大きなモノマーを設計する方法が考えられます。

比較的大きなBisGMAモノマーをベースにした材料は、変換率と 架橋密度が比較的低いにもかかわらず極めて高い機械的強度を示 しますが、これは、おそらくヒドロキシ基とカルボニル基の間の 水素結合によるものと考えられます。この大きなモノマーによる

図3 (a)BisGMA(MW = 513)は、歯科用コンポジット材料中に高度に架橋 したポリマーマトリックス相を形成するコモノマーとして広く使用されて いる、代表的なジメタクリラートモノマーです。関連する DtBP-BisGMA (MW = 899)巨大モノマー構造体では、嵩高い置換基によって網目構造が 物理的に強化されるため、優れた強度を保ちながら、重合収縮が小さく共 有結合性架橋密度が低いポリマーが得られます。(b)C36二塩基酸コア構造 (青色)をベースとしたジメタクリラートモノマー。モノマー I は、二塩基 酸をジオールに還元した後、無水メタクリル酸と反応させて合成したもの です。モノマーIIは、コア構造のジエポキシド誘導体を使用し、メタクリル 酸と反応させて合成しました。モノマーⅢは、ジイソシアナート誘導体を 2-hydroxyethyl methacrylate(Aldrich製品番号477028)と反応させて合 成したものです。従来のジメタクリラート構造を持つコモノマーと同様に、 これらのモノマーの重合によって収縮率の低下に寄与する相分離が起こ り、応力が低下します。

物理的および共有結合性の架橋結合を利用した方法は、ビスフェ ノールAジグリシジルエーテルから合成されたジ-tert-ブチル フェノールとメタクリル酸で置換したモノマーなど、分子量が極 めて大きなBisGMAのジメタクリラートモノマー誘導体にも 適用されます(図3a)¹³。bis(di-tert-butylphenoxy)-modified dimethacrylate(DtBP-BisGMA)の場合、嵩高い芳香族基の立体相

Θ

a p

Ē

0

c

互作用によって網目構造が物理的にさらに強化され、低い収縮率 と高い弾性率を同時に得ることができます。

共重合体の開発

重合収縮を低減させる巨大モノマーのその他の用途として、C₃₆ 二塩基酸をコアとする構造体から合成されたジメタクリラート化 合物によって、完全にアモルファスな硬化性ポリマーが得られて います(図3b)。C36二塩基酸または対応するジエポキシドを用い て、末端メタクリル基とC36コア構造体の間を異なる結合でつな いだいくつかのモノマーが合成されています14。これらすべての 化合物から、室温でゴム状の特性と低い弾性率を保つ一方で、極 めて高い変換率とともに低い収縮率と極端な疎水性を示すホモポ リマーが得られます。C36二塩基酸モノマーは、コモノマーとして 他の従来の歯科用モノマーと組み合わせた場合、水素結合能力の 欠如のため、BisGMAなどのモノマーとの水素結合に関する親和 性が限定されることが明らかになっています。逆に、水素結合性 OH基のC₃₆二塩基酸モノマー構造体への導入によってBisGMA との相溶性が付与されますが、エトキシ誘導体である BisEMA と の相溶性は付与されませんでした。この限定的な熱力学的相溶性 は、初期の均一なモノマー混合物から不均一性が制御された共重 合体を生成するような二成分または三成分のコモノマー組成に よって、調節することができます。

最終的に得られる不均一ポリマーへの変換率が高いにもかかわら ず、個々の相および重合した共重合体材料の相構造全体における 相対的な反応速度がある特有の条件下では、重合収縮は極めて低 くなります。これらの不均一共重合体材料は、重合反応の最終段 階に近づくほど応力成長が集中するため、反応後半での収縮の回 復、つまり応力緩和の可能性を示します。また、熱可塑性プレポリ マー添加物、いわゆる低収縮剤も、重合により誘起された相分離 反応中に形成された相境界での内部応力緩和に基づいて収縮を制 御することが示されています。

ナノゲルの形成

高度に分岐した短い高分子鎖のナノゲルは、比較的高濃度の isobornyl methacrylate(Aldrich製品番号 392111)とurethane dimethacrylateを含む溶液を用いて、モノビニル/ジビニル光重 合により調製されました(図4)¹⁵。個々の球状ポリマーナノゲル粒 子は、大きさが5 nm ~ 100 nm で分子量は10⁴から10⁶ Da以上 です。これらのメタクリラート官能基化ナノゲル粒子を最大50 wt.%の濃度で歯科用レジンに添加すると、少なくとも比例して、 重合収縮と応力成長を減少させることができます。硬化反応速 度、変換率、および機械的強度といった特性に対する影響も全く、 もしくはほとんどありません。約20 wt.%までのナノゲルの添加 量であれば、モノマーの粘性に対する影響はごくわずかです。ナ ノゲルの添加量が極めて高い場合でも、大量の無機充填材を用い ることで収縮と応力の低い歯科用コンポジット材を得ることがで きます。

図4(a)溶液内でのモノビニルモノマーとジビニルモノマーの共重合反応 (モル比2:1)によって分岐/環化ナノゲル粒子を調製することができます。 鎖長の制御、マクロゲル化の防止、および反応性メタクリル基の再取り込 みサイトの導入のために連鎖移動剤を使用します。(b)TEGDMA(Aldrich 製品番号261548)中に反応性ナノゲル粒子が高濃度に分散していても、光 学的に透明に近いモノマーおよびポリマー材料を得ることができます。(c) モノマー変換率や最終的なナノゲル改質ポリマーの機械的性質に悪影響を 及ぼすことなく、重合収縮と応力が大幅に低減されます。

チオール-エンの化学反応を使用した メタクリラート架橋網目構造

硬化反応中に生じる収縮とは比較的独立した関係にある、重合応 力を低減する方法も存在します。ラジカル誘起チオール-エン重 合は、メタクリラート化合物のフリーラジカル連鎖重合反応にの みに依存するというよりは、逐次重合反応を利用します。 pentaerythritol tetramercaptoproprionate(Aldrich製品番号 381462)などの複数のチオール基を持つ化合物と、triallyl-1,3,5triazine-2,4,6-trione(Aldrich製品番号114235)などの複数のア ルケン基を含む化合物とを光重合させることで、極めて高い変換 率で高度に均一なポリマー網目構造を得ることができます16.17。 もう1つの利点は、これらのチオール-エン重合によって十分に制 御されたゲル化点が得られることであり、また、ジメタクリラー ト重合よりはるかに高い変換率を得ることができます。このこと の重要性は、試料内に粘性のある流れが生じることにより事実上 応力の成長を免れ、ゲル化前の収縮を調整することができる点に あります。したがって、逐次重合反応に基づいた、ゲル化点が 40%から70%を超える変換率のチオール-エン重合が可能であ り、ジメタクリラート重合で合成されたポリマーと比較して、最 終的な応力レベルが大幅に低下したポリマーが得られることにな ります。

進展

チオール-エン重合では、エン成分の単独重合をなくすか、または 最小化するために一般にアルケンが用いられます。この観点か ら、チオール基との化学量論的な反応速度を保つには、ビニル エーテル、ビニルエステル、アリルエーテル、およびノルボルネン 官能基をベースとするアルケンが最適です。逐次/連鎖の両方の 反応によって重合したチオール-エン/メタクリラートの混合樹 脂系は、保管中の安定性改善と機械的強度の強化に関して利点が あり、しかも低応力ポリマーが得られます1%。一方、上述のように チオール-アルケン反応は、逐次反応による架橋密度が極めて高 い網目構造を形成することが可能です。他方、チオールは、メタク リラートモノマーに対して効率のよい連鎖移動剤として機能する ことがよく知られています。単純なチオール改質ジメタクリラー ト光重合では、methyl mercaptopropionate(Aldrich 製品番号 108987)とbenzenethiolを用いることでゲル化およびガラス化 の遅延を十分に制御し、応力は大幅に低下するにもかかわらず、最 終的により高いポリマー変換率と弾性を得ることができます18。

ポリマー網目構造中の応力を緩和するためのまったく異なる手法 がチオール-エン系で最近明らかになり、架橋ジメタクリラート材 料にも応用が可能です。この新たな手法では、ネットワークの結 合構造が共有結合性のまま保たれる、共有結合性で柔軟性の高い 網目構造(covalent adaptable network)が作製され、しかも各結 合を活性ラジカル種の存在下で切断、再生することが可能です¹⁹。 歯科用材料の作製の場合、アリルスルフィド成分を多官能性モノ マーに導入した後、チオール-エン光重合を行います。重合が進む につれて、アリルスルフィド結合の追加と切断によりポリマー網 目構造が成長し、単にゲル化前だけではなく重合反応全体で応力 が緩和されます(**図5**)。この適応性の高いネットワーク形成反応 を用いることによって、アリルスルフィド基をプロピルスルフィ ド誘導体で置き換えた以外はまったく同じ架橋モノマー系と比較 して、重合収縮による応力が最大75%低下することが報告されて います。

図5 重合中の応力緩和のための、ラジカル付加-解裂の可能なアリルスル フィド基を持つ架橋ユニットを基盤とする、共有結合性で柔軟性の高い網 目構造。追加チオール末端ポリマー鎖によって、既存の炭素・硫黄結合の可 逆的でランダムな再配置が可能になり、架橋ポリマー網目構造全体で応力 の消失につながります。

結論

メタクリラートモノマーをベースとしたコンポジット材料は、歯の組織を審美的かつ機能的に修復するために広く使用されています。これらの材料の信頼性をさらに高めるために、多様な新しい 重合反応が開発されています。現在行われている研究では、新たなモノマーの設計や新規重合反応の利用などが検討されています。これらは、重合中の収縮と修復用コンポジット材料中の応力 に関連した課題の解決のために行われていますが、その他の工業 用ポリマーに応用することもできます。

References

- Bowen, R. L. Dental filling material comprising vinyl silane treated fused silica and a binder consisting of the reaction product of bisphenol and glycidyl acrylate. U.S. Patent 3066112. November 27, 1962.
- (2) Trujillo-Lemon, M.; Jones, M. S.; Stansbury, J. W. J. Biomed. Mater. Res., A 2007, 83A, 734-746.
- (3) Dickens, S. H.; Stansbury, J. W.; Choi, K. M.; Floyd, C. J. E. Macromolecules 2003, 36, 6043-6053.
- (4) Lovell, L. G.; Berchtold, K. A.; Elliott, J. E.; Lu, H.; Bowman, C. N. Polym. Adv. Technol. 2001, 12, 335-345.
- (5) Stansbury, J.; Dickens, S. Dent. Mater. 2001, 17, 71-79.
- (6) Cook, W. D. Polymer 1992, 33, 600-609.
- (7) Moszner, N.; Fischer, U. K.; Ganster, B.; Liska, R.; Rheinberger. V. Dent. Mater. 2008, 24, 901-907.
- (8) Klapdohr, S; Moszner, N. Monatsh. Chem. 2005, 136, 21-45.
- (9) Moszner, N.; Salz, U. Macromol. Mater. Eng. 2007, 292, 245-271.
- (10) Stansbury, J. W.; Trujillo-Lemon, M.; Lu, H.; Ding, X.; Lin, Y.; Ge, J. Dent. Mater. 2005, 21, 56-67.
- (11) Lu, H.; Lovell, L. G.; Bowman, C. N. Macromolecules 2001, 34, 8021-8025.
- (12) Lu, H.; Stansbury, J. W.; Dickens, S. H.; Eichmiller, F. C.; Bowman, C. N. J. Biomed. Mater. Res., B 2004, 71B, 206-213.
 - (13) Ge, J. H.; Trujillo, M.; Stansbury, J. Dent. Mater. 2005, 21, 1163-1169.
 - (14) Trujillo-Lemon, M.; Ge, J.; Lu, H.; Tanaka, J.; Stansbury, J. W. J. Polym. Sci., Part A: Polym. Chem. 2006, 44, 3921-3929.
 - (15) Stansbury, J. W.; Trujillo-Lemon, M.; Ding, X. Am. Chem. Soc. Polymer Preprints, 2006, 47, 825-826.
 - (16) Carioscia, J. A.; Schneidewind, L.; O'Brien, C.; Ely, R.; Feeser, C.; Cramer, N.; Bowman, C. N. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 5686-5696.
 - (17) Lu, H.; Carioscia, J. A.; Stansbury, J. W.; Bowman, C. N. Dent. Mater. 2005, 21, 1129-1136.
 - (18) Cramer, N. B. Couch, C. L; Schreck, K. M.; Carioscia, J. A.; Boulden, J. E.; Stansbury, J. W.; Bowman, C. N. Dent. Mater. 2010, 26, 21-28.
 - (19) Fairbanks, B. D.; Sims, E. S.; Anseth, K. S.; Bowman, C. N. Macromolecules 2010, 43, 4113-4119.
 - (20) Kloxin, C. J. Scott, T. F.; Adzima, B. J.; Bowman, C. N. Macromolecules 2010, 43, 2643-2653.

メタクリラートモノマー

高分子材料の最新情報は sigma-aldrich.com/polymer-jp をご覧ください。

Name	Structure	Purity	CAT. NO.
2-Methacryloyloxyethyl phosphorylcholine	$H_2C \downarrow \begin{matrix} 0 \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\ - \\$,	730114-5G
Morpholinoethyl methacrylate		95%	729833-25G
Triphenylmethyl methacrylate			730122-5G
Methacrylic acid N-hydroxysuccinimide ester		98%	730300-5G
2-(Diisopropylamino)ethyl methacrylate	$\begin{array}{c} & H_3C \downarrow CH_3 \\ H_2C \downarrow C \downarrow 0 \\ CH_3 \\ CH_3 \\ CH_3 \end{array}$	97%	730971-25G
2-Hydroxyethyl methacrylate	H ₂ C CH ₃ O OH	97%	128635-5G 128635-500G 128635-1KG
2-Hydroxyethyl methacrylate	H ₂ C H ₃ O OH	≥99%	477028-25ML 477028-100ML
Ethyl methacrylate	H ₂ C H ₃ CH ₃	99%	234893-100ML 234893-500ML 234893-1L
Glycidyl methacrylate		97%	151238-100G 151238-500G
2-Aminoethyl methacrylate hydrochloride		90%	516155-5G 516155-25G
Lauryl methacrylate	H ₂ C CH ₃ CH ₃ OCH ₂ (CH ₂) ₁₀ CH ₃	96%	291811-100ML 291811-500ML
Allyl methacrylate	H_2C H_2 CH_2 CH_2	98%	234931-100ML 234931-500ML
3-Sulfopropyl methacrylate potassium salt	H₂C ↓ 0 ↓ 8-0K	98%	251658-100G 251658-500G
Hexyl methacrylate	$H_2C \xrightarrow{O}_{CH_3}OCH_2(CH_2)_4CH_3$	98%	462373-500G 462373-1KG
Stearyl methacrylate	$H_2C \xrightarrow{O}_{CH_3}OCH_2(CH_2)_{16}CH_3$	technical grade	411442-250ML 411442-1L
2-(Diethylamino)ethyl methacrylate	$H_2C \xrightarrow{O}_{CH_3} N \xrightarrow{CH_3} CH_3$	99%	408980-250ML 408980-1L

メタクリルアミドモノマー

Name	Structure	Purity	CAT. NO.
Methacrylamide		98%	109606-5G 109606-250G 109606-500G
<i>N</i> -IsopropyImethacrylamide	$\begin{array}{c} H_2C \bigvee C H_3\\ H_2C \bigvee H_3\\ H H C H_3 \end{array}$	97%	423548-25G
N-[3-(Dimethylamino)propyl]methacrylamide	$\overset{O}{\overset{H_2C}{\leftarrow}\overset{H_2}{\overset{H_3}{\leftarrow}}}_{CH_3}\overset{O}{\overset{H_3}{\leftarrow}}\overset{N}{\overset{CH_3}{\overset{H_3}{\leftarrow}}}$	99%	409472-250ML 409472-1L
N-(3-Aminopropyl)methacrylamide hydrochloride	H ₂ C H ₃ N H H H H HCI		731099-1G 731099-5G
<i>N</i> -Diphenylmethylacrylamide	H ₂ C H	96%	731145-5G
<i>N</i> -(Triphenylmethyl)methacrylamide			731781-1G 731781-5G

架橋剤

Acrylic Cross-Linkers

Name	Structure	Purity/M _n	CAT. NO.
<i>N,N'-</i> Hexamethylenebis(methacrylamide)	$\underset{CH_3}{\overset{O}{}_{H_2C}} \overset{O}{\underset{H_3}{}_{H_2}} \overset{CH_2(CH_2)_4CH_2}{\underset{H_3}{}_{H_2}} \overset{O}{\underset{H_3}{}_{H_2}} \overset{O}{\underset{CH_3}{}_{H_3}}$	-	729825-5G
Di(ethylene glycol) dimethacrylate	$\begin{array}{c} 0\\ H_2G \\ H_3 \\ CH_3 \end{array} \xrightarrow{O} CH_2 \\ CH_3 \\ CH_3 \end{array} \xrightarrow{O} CH_2 \\ CH_3 \\ CH_3$	95%	409006-250ML
Ethylene glycol diacrylate	H2C TO CH2	90%	480797-5ML 480797-25ML
Ethylene glycol dimethacrylate	$H_2C \xrightarrow{CH_3} O \xrightarrow{O} (CH_2) \xrightarrow{CH_3} CH_3$	98%	335681-5ML 335681-100ML 335681-500ML
Triethylene glycol dimethacrylate	$\begin{array}{c} H_2C \searrow 0 \\ H_2C \swarrow 0 \\ CH_3 \end{array} \\ O O O O O O O O O O O O O O O O O O$	95%	261548-250ML 261548-1L
Poly(ethylene glycol) diacrylate	$H_2C = \int_{n}^{0} \int_{n}^{0} CH_2$	average M _n 575	437441-100ML 437441-500ML
Poly(ethylene glycol) diacrylate	$H_2C = \int_{0}^{0} \int_{0}^{0} CH_2$	average M _n 700	455008-100ML 455008-500ML
Poly(ethylene glycol) dimethacrylate	$\begin{array}{c} O\\ H_2C \searrow \\ CH_3 \end{array} \begin{array}{c} O\\ O\\ O\\ O \end{array} \begin{array}{c} O\\ O\\ O\\ O \end{array} \begin{array}{c} CH_3\\ O\\ O\\ O\\ O \end{array} \begin{array}{c} CH_3\\ CH_2 \end{array}$	average M _n 550	409510-250ML 409510-1L
Poly(ethylene glycol) dimethacrylate	$\begin{array}{c} O\\ H_2C \searrow \\ CH_3 \end{array} O \longrightarrow O \\ O\\ CH_2 \\ CH_2 \\ O \\ $	average M _n 750	437468-250ML 437468-1L
NN'-(1,2-Dihydroxyethylene)bisacrylamide	$H_2C = \bigcup_{O}^{H} \bigcup_{OH}^{OH} \bigcup_{H}^{OH} CH_2$	97%	294381-5G 294381-25G

歯科用修復材料開発の進展

Thiol Cross-Linkers

Name	Structure	Purity	CAT. NO.
1,2-Ethanedithiol	HSCH ₂ CH ₂ SH	≥90%	398020-100ML 398020-500ML
1,3-Propanedithiol	HS	99%	P50609-5G P50609-25G
2,3-Butanedithiol	SH H ₃ C CH ₃ SH	≥97%	264695-1G
1,5-Pentanedithiol	HSCH ₂ (CH ₂) ₃ CH ₂ SH	96%	242551-5G
2,2'-(Ethylenedioxy)diethanethiol	HSOSH	95%	465178-100ML 465178-500ML
1,6-Hexanedithiol	SHCH ₂ (CH ₂) ₄ CH ₂ SH	96%	H12005-5G H12005-25G
1,6-Hexanedithiol	SHCH ₂ (CH ₂) ₄ CH ₂ SH	99.5%	725382-1G
1,8-Octanedithiol	HSCH ₂ (CH ₂) ₆ CH ₂ SH	≥97%	O3605-1G O3605-5G
1,9-Nonanedithiol	HSCH ₂ (CH ₂) ₇ CH ₂ SH	95%	N29805-5G N29805-25G
1,11-Undecanedithiol	HSCH ₂ (CH ₂) ₃ CH ₂ SH	99%	674281-250MG
5,5'-Bis(mercaptomethyl)-2,2'-bipyridine	HS SH	96%	711241-500MG
1,16-Hexadecanedithiol	HSCH ₂ (CH ₂) ₁₄ CH ₂ SH	99%	674400-100MG

Vinyl Cross-Linkers

Name	Structure	Purity/M _n	CAT. NO.
1,4-Butanediol divinyl ether	H ₂ C ^C O CH ₂	98%	123315-50ML
1,4-Cyclohexanedimethanol divinyl ether, mix- ture ofi somers	H ₂ C _{>>} O	98%	406171-100ML 406171-500ML
Di(ethylene glycol) divinyl ether	H ₂ C ² 0 ⁰ 0 ^C CH ₂	99%	139548-50ML
Poly(ethylene glycol) divinyl ether	$H_2C \sim 0 \sim CH_2$	average M _n 240	410195-5ML 410195-25ML
Tri(ethylene glycol) divinyl ether	$H_2C \sim 0 \sim CH_2$	98%	329800-250ML 329800-1L
1,4-Bis(4-vinylphenoxy)butane	H ₂ C ₂ C ₁ C ₁ C ₂	>90%	730262-1G

光重合開始剤

光重合開始剤のブレンドにより、硬化速度や着色の抑制などの効果が得られることがあります。色素は光重合開始剤の増感剤として、紫外から近紫外や可視領域への吸収波長のシフトに用いられます。色素と光重合開始剤の組み合わせによって可視スペクトル全体にわたって吸収ピークが得られるため、可視発光レーザーを光重合に用いることが可能になります。 重合開始剤の最新情報は*sigma-aldrich.com/polymer-jp*をご覧ください。

Name	Structure	Purity	CAT NO
Acetophenone	CT ^{CH3}	99%	A10701-5G A10701-100G A10701-1KG
Anthraquinone		97%	A90004-50G A90004-250G
Anthraquinone-2-sulfonic acid sodium salt	O S-ONa O S-ONa	97%	123242-100G 123242-1KG
Benzoin	C OH	≥99.5%	399396-5G
Benzoin methyl ether	O CH ₃	96%	B8703-100G
4,4'-Bis(diethylamino)benzophenone	H ₃ C ^N H ₃ C ^C H ₃	≥99%	160326-25G 160326-100G
Camphorquinone	H ₃ C CH ₃ H ₃ C O	97%	124893-5G 124893-10G 124893-50G
2,2-Diethoxyacetophenone		>95%	227102-500G
4,4'-Dihydroxybenzophenone	но	99%	D110507-5G D110507-25G
2,2-Dimethoxy-2-phenylacetophenone	H ₃ CO OCH ₃	99%	196118-50G 196118-250G
4'-Ethoxyacetophenone	H ₃ C ^O CH ₃	98%	275719-25G 275719-100G
1-Hydroxycyclohexyl phenyl ketone		99%	405612-50G 405612-250G
2-Hydroxy-2-methylpropiophenone	HO CH ₃	97%	405655-50ML 405655-250ML
Methyl benzoylformate	OCH3 OCH3	98%	M30507-5G M30507-25G

28

アミン系重合開始剤

Name	Structure	Purity	CAT. NO.
2-(Diethylamino)ethyl acrylate		95%	408972-100ML
2-(Diethylamino)ethyl methacrylate	H_2C H_3 H_2CH_3 H_3CH_3 H_2CH_3 H_3CH_3 H	99%	408980-250ML 408980-1L
4,4'-Bis(diethylamino)benzophenone	H ₃ C N CH ₃	≥99%	160326-25G 160326-100G
Ethyl 4-(dimethylamino)benzoate	H _a C. _N , CH _a	≥99%	E24905-5G E24905-100G E24905-500G
Michler's ketone	H ₃ C _N CH ₃ CH ₃ CH ₃ CH ₃	98%	147834-100G 147834-500G

ナノ材料の毒性スクリーニング方法

Tian Xia,^{1,2} Huan Meng,^{1,2,†} Saji George,^{1,2,†} Haiyuan Zhang,^{1,2,†} Xiang Wang,^{1,2,†} Zhaoxia Ji,^{2,†} Jeffrey I. Zink,^{2,3} Andre E. Nel^{1,2,*} ¹Division of NanoMedicine, Department of Medicine, University of California,

Los Angeles, CA 90095 ²California NanoSystems Institute, University of California, Los Angeles, CA 90095 ³Department of Chemistry & Biochemistry, University of California, Los Angeles, CA 90095 *Email: anel@mednet.ucla.edu

[†]Not pictured

はじめに

ナノ材料の安全性評価における重要な課題は、新たに工業的に作 製されたナノ材料(ENM: engineered nanomaterial)を大量に 取り扱うことのできるシステムの構築であり、たとえば、有害性 のスクリーニングが可能な費用効率の高い方法の開発などがあり ます1。適切なスクリーニング用プラットフォームを開発するた めには、生物学的有害性をもたらすと思われるある特定の材料組 成や特性に対するスクリーニングに利用可能な、ナノ材料ライブ ラリの収集と合成が必要です1-3。我々の見解では、まず迅速に評 価するために、プラットフォームを使用したスクリーニングを生 体分子および細胞レベルで行うことで、ナノ材料と生体との境界 面で潜在的に起こりうる有害な反応についての包括的なデータ ベースを作成し、次に、これらの特性と活性との相関を利用する ことで、in vitro(試験管内)での観察結果が実際にどの程度重要性 をもつのかを検証するための動物実験の優先順位を決めるべきで あると考えています4。米国国家毒性プログラム(National Toxicology Program)および米国科学アカデミー(NAS: National Academy of Sciences)の下部組織である米国学術研究 会議(NRC: National Research Council)の両者は、21世紀の毒 性試験を、動物を用いた主として記述的な科学から、対象を特定 し、あるメカニズムに基づいた生物学的スクリーニングを前提と する予測的な科学の領域に進展させることを推奨しています5%。 さらに、生物学的試験は、一回に1つの毒物しか試験することの できない、費用のかかる動物実験ではなく、複数の毒物を同時に スクリーニングすることのできる信頼性の高い科学的パラダイム に基づくべきであるとも推奨しています47。

我々は上述の手法を予測的毒性パラダイム(predictive toxicological paradigm)と呼び、材料や物質の*in vivo*(生体内)で の潜在的毒性を*in vitro*および*in silico*(コンピュータ内)な方法に 基づいて評価することであると定義しています⁴。このパラダイ ムを確立する上で留意しなければならない要件が主に4つありま す。1つ目は、生物学的損傷を引き起こす可能性のある材料特性に 関する知識を構築するための、ENMの組成ライブラリおよび複合 ライブラリを収集または合成することです。2つ目の要件は、損傷 の機構と経路を利用する*in vitro*の細胞スクリーニング試験を開 発することです。3つ目は、多くの材料組成と特性を評価できる、 損傷の経路に基づいたハイコンテントスクリーニングまたはラ ピッド(rapid)スループットスクリーニングのプラットフォーム を開発することです。最後に、in silicoモデリングの中でin vitro データを使用することで定量的構造活性相関(QSAR: quantitative structure-activity relationship)を確立し、動物実験 の優先順位付けに利用できる危険有害性ランキングを作成する必 要があります。

ENMライブラリの構築

毒性のスクリーニングおよび生物学的損傷を引き起こす可能性の 非常に高い材料特性の解明に必要な基盤インフラに要求される条 件に、ナノ材料の標準物質(SRM: standard reference nanomaterial)ライブラリの収集と特性評価があります®。ライブ ラリ材料の選択には、現在の主要なENM材料(金属、金属酸化物、 シリカ、および炭素系ナノ材料)をはじめとする、各種ナノ材料の 商業的生産量を考慮に入れる必要があります。さらに、曝露の可 能性、曝露経路、および移動経路も考えなければなりません。たと えば、遊離ナノ粒子や粉末は空気中に浮遊しやすく、吸入すると 肺毒性を引き起こす可能性があります。したがって、この場合、肺 細胞(*in vitro*)と、潜在的損傷のメカニズムの観点から理想的には 関連付けられるべき肺曝露(*in vivo*)によって調査するのが妥当で す。理想的なENMライブラリには、材料毒性評価の基準とするた めに、陽性対照と陰性対照のENMも含める必要があります。

我々は、単純な組成ENMライブラリとして3種類の金属酸化物 (TiO₂、CeO₂、ZnO)を選択し、そのナノ材料を合成しました^{9,10}。 試験手順とプロトコールを詳細に検討した後、Au、Ag、Pt、SiO₂、 Al₂O₃、Fe₃O₄などの金属や金属酸化物のナノ材料および量子ドッ トを対象に追加しました(**図1**)。すべてのナノ粒子について、組 成、純度、サイズ、表面積、形状、結晶性、溶解速度に関する特性評 価を十分に行い、さらに無細胞系での活性酸素(ROS)の生成特性 についても評価を行いました。*in vitro*スクリーニングを行うため に、細胞培養液中にナノ粒子を十分に分散させ、毒性スクリーニ

図1 組成および複合ENMライブラリの構築。このプロセスには、自身での 合成または外部からの購入による、同程度のサイズと表面積を持つ、十分 に特性を把握した標準物質の収集が必要です。ライブラリは、金属、金属酸 化物、炭素、またはシリカベースのナノ材料にそれぞれグループ化できま す。各ライブラリの材料を用いて、ほ乳類細胞、細菌、酵母菌、ゼブラフィッ シュなどの各種スクリーニングシステムに対してハイスループットスク リーニングを行います。特定された有毒物質は、ENMのさまざまな潜在的 毒性を含む複合ライブラリの作製に利用されます。ENMスクリーニングか ら得られた情報は、その後の定量的構造活性相関(QSAR)モデルの構築に 使用することができます。選択したENMをin vivo試験に使用して、in vitro スクリーニングから得られた結果を検証します。

ナ

材料の毒性スクリーニング方法

a p

E

0

c

a-aldr

S i g m

ングの解釈に影響を与えるであろう粒子の凝集を防ぐための、たんぱく質を用いた分散プロトコールを確立しました^{11,12}。最初の3 種類の金属酸化物について、ナノZnOは複数のほ乳類細胞株に対 して極めて高い毒性を示す一方、TiO₂とCeO₂は暗条件で毒性を 持たないことが分かりました¹³。さらに、ナノ粒子の物理化学的特 性評価から、ZnOがほ乳類細胞中で毒性を誘発する機構に、ZnO 粒子の溶解と有毒なZnイオンの分散が重要な役割を果たしてい ることを確認しました。また、TiO₂は光活性化によって毒性を持 つようになることを明らかにしましたが、そのためにはバンド ギャップを調節して、毒性のない紫外波長を細胞スクリーニング に使用できるようにする必要があります。

ENMの特定の物理化学的特性とその毒性との関係を明らかにす るには、複合ライブラリを作製する必要があり、毒性に関係する 可能性のある主要な物理化学的特性が変化または部分的に変更す るように材料を合成します。変化させる特性には、ナノ粒子のサ イズ、表面積、形状、結晶性、バンドギャップ、多孔性、溶解性、電 荷、表面機能化などが考えられます(図2)。我々は、ZnOによって 誘発される毒性において溶解が重要であることを確認した際に、 材料を改質することで溶解速度が変化し、その毒性が変化する可 能性があるという仮説を立てました。

図2 複合 ENM ライブラリの例。複合ライブラリは、毒性に関係すると思われる主要な物理化学的特性の1つが変化するように構成材料を合成していくことで構築していきます。変化させる特性には、ナノ粒子のサイズ、形状、多孔性、親水性/疎水性、結晶性、バンドギャップ、光活性、溶解性、電荷、表面積などがあります。1つの特性が変化すると他の特性も変化する場合があるため、厳密に特性を再評価することが必要です。

この仮説を検証するための1つの方法は、ナノ粒子の合成中に別 の元素である鉄をZnO中に導入することです。Feの含有率が段 階的に変化したFe ドープZnOナノ粒子の複合ライブラリを注意 深く合成し、このライブラリの特性を評価したところ、Feのドー プ量が増加すると、ZnOの結晶構造が変化することなく水溶液へ のZnOの溶解速度が低下することがわかりました¹⁴。これらのナ ノ粒子の毒性を in vitro で試験したところ、Feのドープ率が増加 するとともに細胞毒性が低下することが明らかとなり、溶解速度 が細胞毒性に対して非常に重要な役割を果たしていることを見出 しました。現在、FeドープZnOライブラリを使用して in vivo 試験 を行っていますが、予備実験からのデータは、in vitroでの結果が ゼブラフィッシュ、マウス、ラットなどの複数の動物モデルにも 適用できることを示しています。これらの結果は、組成ENMライ ブラリを構築することで潜在的に毒性を持つナノ材料を迅速に特 定できること、およびナノ材料の特性を変化させて複合ENMラ イブラリを構築することで、特定の物理化学的特性と毒性との関 係を明らかにするのに役立つことを示しています。

in vitro スクリーニング試験の開発

ENMの細胞毒性に関する知識の多くは、乳酸脱水素酵素(LDH: Lactate Dehydrogenase)やMTT/MTS比色法などの極めて直接 的な細胞生存率測定、またはヨウ化プロピジウム(PI)染色法を用 いて得られてきました。ところが、これらの測定法では複数の刺 激から同じ結果が得られる可能性があるため、特定の毒物学的経 路についての情報が得られない場合が多いという大きな欠点があ ります。そのため、生物学的結果と特定のENM特性をほとんど結 び付けることができません。さらに、細胞生存率測定では亜致死 性毒性効果も反映されません。こうした理由から、我々は作用機 序に基づいた in vitro 試験の開発を提唱します。これは、 in vitro 毒 性スクリーニングと in vivoの病理学的影響との関係を明らかに するのに最も概念的に容易な手段であるためです。現在、ENMと の関係が明らかな毒性の主な機構的経路(mechanistic pathway) はおよそ10種類存在します(表1)。その中には、活性酸素や酸化 ストレスの生成などの損傷パラダイム、不完全な貪食(frustrated phagocytosis、たとえば、中皮表面でのもの)、たんぱく質の構造 と機能の変化(たとえば、酵素活性の喪失)、小胞体ストレス応答、 免疫応答の活性化(たとえば、潜在性エピトープの曝露や免疫活 性化作用によるもの)、線維形成および組織再構築、血液凝固、血 管損傷、神経毒性(たとえば、酸化ストレス、たんぱく質のフィブ リル化)、遺伝毒性などが含まれます。

表1 ナノ材料(ENM)の毒性につながる可能性のある主な毒性経路の実験 例(NP=ナノ粒子、UFP=超微粒子)

Toxicological Pathway	Example Nanomaterials
Membrane damage/leakage/thinning	Cationic NPs
Protein binding/unfolding responses/loss of function/fibrillation	Metal oxide NPs, polystyrene, dendrimer, carbon nanomaterials
DNA cleavage/mutation	Nano-Ag
Mitochondrial damage: e-transfer/ATP/ PTP opening/apoptosis	UFPs, Cationic NPs
Lysosomal damage: proton pump activity/lysis/ frustrated phagocytosis	UFPs, Cationic NPs, CNTs
Inflammation: signaling cascades/cytokines/ chemokines/adhesion	Metal oxide NPs, CNTs
Fibrogenesis and tissue remodeling injury	CNTs
Blood platelet, vascular endothelial and clotting abnormalities	SiO ₂
Oxidative stress injury, radical production, GSH depletion, lipid peroxidation, membrane oxidation, protein oxidation	UFPs, CNTs, Metal oxide NPs, Cationic NPs

新規ENMの物理化学的特性は広範囲に及ぶことから、この他の 毒性機構があり得ることに注意することが重要です。本論文で は、酸化ストレスの生成について焦点を当てることにします。

in vitroでの経路評価のための ラピッドスループットスクリーニング

ナノ粒子によって引き起こされる酸化ストレスは、細胞の抗酸化防御、サイトカイン/ケモカインの産生につながる炎症性情報伝達経路の活性化、およびミトコンドリアを介した細胞死という3段階の細胞応答を引き起こします^{3,9,14,15}。ただし、この3段階の酸化ストレスの評価に必要な試験全体を行うには、少なくとも2~3週間にわたる膨大な作業が必要です。ラピッド(rapid)スループットスクリーニングには、従来の測定法にはないいくつかの利点があります。第1に、組成および複合ENMライブラリによって情報蓄積のペースを上げることが可能です。ハイスループットスクリーニング(HTS)では、手順の標準化、自動化(たとえば、細胞

播種、液体処理、画像化、画像解析)、および小型化(試薬が少量で 済み、コストが削減される)によって迅速な読み出しが可能にな ります。HTSでは大規模なライブラリのスクリーニングが可能な だけでなく、同一実験内で複数の細胞株、観察時点、および曝露量 で実験を行うこともできます。この手法は、優れたバイオイン フォマティクス(生物情報科学)や意思決定ツールと組み合わせる ことで、毒性スクリーニングの信頼性を大幅に向上させるだけで なく、特性と活性との相関関係も明らかにすることができます。 毒性メカニズムに基づいたラピッドスループットプラットフォー ムを開発するには、損傷経路内の異なる段階もしくは接点を組み 合わせることが有効となります。このようなマルチパラメトリッ ク(multi-parametric)スクリーニングによって測定方法の有用性 が向上し、致死および亜致死の細胞応答を対象に含むことが可能 となり、測定予測値の改善につながります。このような例として、 我々は、酸化ストレスの進んだ段階で関与する細胞内のいくつか の酸化ストレス応答についてのマルチパラメトリックスクリーニ ングの方法を最近開発しました(図3)14。

図3 金属酸化物ナノ材料の引き起こす細胞応答の相関関係を表した概略 図。我々は、ナノ粒子による活性酸素(ROS)の生成と酸化ストレスをベース としたマルチパラメトリックHTS法を確立しました。ROSの生成は、ナノ 材料固有の特性の直接的な結果として、またはオキシダントラジカルを生 成する細胞内の損傷応答がナノ材料に誘発された結果として起こります。 ROS生成によって、広い範囲に酸化ストレスの影響が及ぶ可能性がありま す。最大級の酸化ストレスにおける細胞毒性の発現には、細胞内のCa²⁺放 出や細胞死の前段階となるミトコンドリア膜電位(MMP)の変化、細胞膜の 完全性(integrity)の変化、核のヨウ化プロピジウム(PI)吸収量の変化など、 相互に関連する多くの細胞応答が関係します。マルチパラメトリックHTS 法におけるパラメーターを黄色で強調しました。

in vivo 試験の優先順位付けと定量的構造活性相関(QSAR)モデルの作成

in vivoスクリーニングには長い時間と大きなコストがかかりま す。発がん性、慢性、生殖、および発生に関する影響の評価を含め た1つの化学薬品に対する毒性評価全体では、数百匹の動物と1 試験あたり100~300万ドルのコストを必要とすることがあり ます。そのため、工業用化学薬品でげっ歯類を使用した毒性試験 を行ったものは2%未満です。我々は予測毒性学(predictive toxicology)の手法を用いることで、ナノ安全性試験における同様 の難問を回避できると考えています。作用機序に基づいたin vitro HTSスクリーニングを使用すれば、毒性の主なメカニズムを特定 して危険有害性のランク付けが可能となるはずであり、これを利 用してin vivo試験の優先順位を付けることができます。また、こ の手法によって、ナノ材料の物理化学的特性に関連する用量と動 態に関するデータが得られ、生物学的応答と曝露結果を定量化で きます。また、in vitroプラットフォームを一次スクリーニングと して使用できるようにする上で、in vivoの結果は、in vitroスク リーニングが「予測的」であることを検証するために重要です。さ らに、in vitroのHTSデータは、将来のリスク予測研究の前段階と して危険有害性の順位付けを行うために、統計学、数学、および機 械学習を使用した in silicoモデリングによる in vitroナノQSARの 確立にも使用されます。

結論

ナノ材料の毒性スクリーニングを行うために、予測毒性学を導入 することを提案します。その導入は、組成および複合ライブラリ の確立、作用機序に基づいた*in vitro*毒性スクリーニング測定法 の開発、マルチパラメトリックHTSの開発、コンピュータによる QSARモデルの構築、および*in vitro*試験の予測可能性を検証する ための*in vivo*試験の優先順位付けを前提にしています。この手法 が、現在増え続けているナノテク関連企業の課題に対応できる知 識ペースを構築するための適切な手法であると我々は考えてい ます。

謝辞

この研究は、米国公衆衛生局助成金 RO1 CA133697、RO1 ES016746、および RC2 ES018766 による資金援助を受けて行わ れました。また、米国国立科学財団(National Science Foundation, NSF)と米国環境保護庁(Environmental Protection Agency, EPA)による支援(Cooperative Agreement Number EF 0830117)、さらに NSF USDOD HDTRA 1-08-1-0041 助成金によ る支援も受けました。本論文に記載された見解、研究成果、結論、 提案はすべて筆者らのものであり、必ずしも米国国立科学財団ま たは米国環境保護庁の見解を反映したものではありません。

References

- (1) Nel, A.; Xia, T.; Madler, L.; Li, N. Science 2006, 311, 622-627.
- (2) Oberdorster, G.; Maynard, A.; Donaldson, K.; Castranova, V.; Fitzpatrick, J.; Ausman, K.; Carter, J.; Karn, B.; Kreyling, W.; Lai, D.; Olin, S.; Monteiro-Riviere, N.; Warheit, D.; Yang, H. Part. Fibre. Toxicol. 2005, 2, 8.
- (3) Xia, T.; Li, N.; Nel, A. E. Annu. Rev. Public Health 2009.
- (4) Meng, H.; Xia, T.; George, S.; Nel, A. E. ACS Nano 2009, 3, 1620-1627
- (5) National Research Council. Toxicity Testing in the 21st Century: A Vision and a Strategy. http://dels.nas.edu/resources/static-assets/materials-based-on-reports/ reports-in-brief/Toxicity_Testing_final.pdf (Accessed 2010).
- (6) National Toxicology Program. Toxicology in the 21st Century: The Role of the National Toxicology Program. http://ntp.niehs.nih.gov/ntp/main_pages/NTPVision. pdf (Accessed 2010).
- (7) Walker, N. J.; Bucher, J. R. Toxicol. Sci. 2009, 110, 251-254.
- (8) Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Nat. Mater. 2009, 8, 543-557.
- (9) Xia, T.; Kovochich, M.; Brant, J.; Hotze, M.; Sempf, J.; Oberley, T.; Sioutas, C.; Yeh, J. I.; Wiesner, M. R.; Nel, A. E. Nano Lett. **2006**, *6*, 1794-1807.
- (10) Xia, T.; Kovochich, M.; Liong, M.; Zink, J. I.; Nel, A. E. ACS Nano 2008, 2, 85-96.
- (11) Ji, Z.; Jin, X.; George, S.; Xia, T.; Meng, H.; Wang, X.; Suarez, E.; Zhang, H.; Hoek, E. M.; Godwin, H.; Nel, A. E.; Zink, J. I. *Environ. Sci. Technol.* **2010**, Article ASAP DOI: 10.1021/ es100417s.
- (12) Xia, T.; Kovochich, M.; Liong, M.; Meng, H.; Kabehie, S.; George, S.; Zink, J. I.; Nel, A. E. ACS Nano **2009**, *3*, 3273-86.
- (13) Xia, T.; Kovochich, M.; Liong, M.; Madler, L.; Gilbert, B.; Shi, H.; Yeh, J. I.; Zink, J. I.; Nel, A. E. ACS Nano 2008, 2, 2121-2134.
- (14) George, S.; Pokhrel, S.; Xia, T.; Gilbert, B.; Ji, Z.; Schowalter, M.; Rosenauer, A.; Damoiseaux, R.; Bradley, K. A.; Madler, L.; Nel, A. E. ACS Nano 2010, 4, 15-29.
- (15) Li, N.; Xia, T.; Nel, A. E. Free Radic. Biol. Med. 2008, 44, 1689-1699.

ナ

ALDRICH[®] Materials Science

a p

ε

0

c

a-aldr

sigm

ナノ材料の最新情報は*sigma-aldrich.com/nano-jp*をご覧ください。

Magnetic Nanoparticles

Name	Structure	Particle Dimensions	Concentration	CAT. NO.
Iron oxide, magnetic nanoparticles solution	Fe ₃ O ₄	avg. part. size 5 nm particle size 4.5 - 5.5 nm (TEM)	5 mg/mL in toluene	700320-5ML
Iron oxide, magnetic nanoparticles solution	Fe ₃ O ₄	avg. part. size 10 nm particle size 9 - 11 nm (TEM)	5 mg/mL in toluene	700312-5ML
Iron oxide, magnetic nanoparticles solution	Fe ₃ O ₄	avg. part. size 20 nm particle size 18 - 22 nm (TEM)	5 mg/mL in toluene	700304-5ML
Cobalt Carbon coated (magnetic) Carbon content < 8 wt. % nanopowder	Co	particle size <50 nm (TEM)	≥99%	697745-500MG

Quantum Dots

Name	Composition	Spectroscopic Properties	CAT. NO.
Lumidot™ CdS, 380, 5 mg/mL in toluene	CdS	λ_{abs} 350-370 nm, $\lambda_{em}=$ 370-390 nm	662429-10ML
Lumidot CdS, 400, 5 mg/mL in toluene	CdS	λ_{abs} 370-390 nm, λ_{em} = 390-410 nm	662410-10ML
Lumidot CdS, 420, 5 mg/mL in toluene	CdS	λ_{abs} 390-410 nm, λ_{em} = 410-430 nm	662402-10ML
Lumidot CdS, 440, 5 mg/mL in toluene	CdS	λ_{abs} 410-430 nm, $\lambda_{em}=$ 430-450 nm	662380-10ML
Lumidot CdS, 460, 5 mg/mL in toluene	CdS	λ_{abs} 430-450 nm, $\lambda_{em}=$ 450-470 nm	662372-10ML
Lumidot CdS, 480, 5 mg/mL in toluene	CdS	λ_{abs} 450-470 nm, λ_{em} = 470-490 nm	662364-10ML
Lumidot CdS-6, quantum dot nanoparticles kit, core type, 5 mg/mL in toluene	CdS	$\lambda_{\rm em} = 380\text{-}480 \text{ nm}$	662593-1KT
Lumidot CdSe, 480, 5 mg/mL in toluene	CdSe	λ_{abs} 455-465 nm, λ_{em} = 475-485 nm	662356-10ML
Lumidot CdSe, 520, 5 mg/mL in toluene	CdSe	λ_{abs} 495-505 nm, λ_{em} = 515-525 nm	662437-10ML
Lumidot CdSe, 560, 5 mg/mL in toluene	CdSe	λ_{abs} 535-545 nm, λ_{em} = 555-565 nm	662445-10ML
Lumidot CdSe, 590, 5 mg/mL in toluene	CdSe	λ_{abs} 565-575 nm, λ_{em} = 585-595 nm	662607-10ML
Lumidot CdSe, 610, 5 mg/mL in toluene	CdSe	λ_{abs} 585-595 nm, λ_{em} = 605-615 nm	662488-10ML
Lumidot CdSe, 640, 5 mg/mL in toluene	CdSe	λ_{abs} 615-625 nm, λ_{em} = 635-645 nm	662461-10ML
Lumidot CdSe-6, quantum dot nanoparticles kit, core type, 5 mg/mL in toluene	CdS	$\lambda_{em} = 480\text{-}640 \text{ nm}$	662550-1KT
Lumidot CdSe/ZnS, 480, 5 mg/mL in toluene	CdSe/ZnS	$\lambda_{em} = 480 \text{ nm}$	694592-2ML 694592-10ML
Lumidot CdSe/ZnS, 510, 5 mg/mL in toluene	CdSe/ZnS	$\lambda_{em} = 510 \text{ nm}$	694657-2ML 694657-10ML
Lumidot CdSe/ZnS, 530, 5 mg/mL in toluene	CdSe/ZnS	$\lambda_{em} = 530 \text{ nm}$	694649-2ML 694649-10ML
Lumidot CdSe/ZnS, 560, 5 mg/mL in toluene	CdSe/ZnS	$\lambda_{em} = 560 \text{ nm}$	694630-2ML 694630-10ML
Lumidot CdSe/ZnS, 590, 5 mg/mL in toluene	CdSe/ZnS	$\lambda_{\rm em}$ = 590 nm	694622-2ML 694622-10ML
Lumidot CdSe/ZnS, 610, 5 mg/mL in toluene	CdSe/ZnS	$\lambda_{em} = 610 \text{ nm}$	694614-2ML 694614-10ML
Lumidot CdSe/ZnS, 640, 5 mg/mL in toluene	CdSe/ZnS	$\lambda_{em} = 640 \text{ nm}$	694606-2ML 694606-10ML

Metal Oxides and Ceramics

ナノ材料の最新情報は **sigma-aldrich.com/nano-jp** をご覧ください。 無機化合物の製品情報は、**sigma-aldrich.com/metalceramic-jp** でもご覧いただけます。

Name	Composition	Particle Size	Purity/Concentration	CAT. NO.
Hydroxyapatite nanopowder	Ca ₅ (OH)(PO ₄) ₃	<200 nm (BET)	≥97%	677418-5G 677418-10G 677418-25G
Hydroxyapatite nanopowder, silica 5 wt. % as dopant	Ca ₅ (OH)(PO ₄) ₃	<200 nm (BET) -		693863-5G
Hydroxyapatite dispersion nanoparticles, ≤0.025 wt. % as dispersant (non-metal based)	Ca ₅ (OH)(PO ₄) ₃	<200 nm (BET)	10 wt. % in $\rm H_2O$	702153-25ML
Tricalcium phosphate hydrate nanopowder	Ca ₃ (PO ₄) ₂	<200 nm (BET) <100 nm (TEM)	-	693898-5G
Aluminum oxide nanopowder	Al ₂ O ₃	<50 nm (TEM)	-	544833-10G 544833-50G
Aluminum oxide nanopowder	Al ₂ O ₃	13 nm	99.8% trace metals basis	718475-100G
Aluminum oxide, dispersion nanoparticles	Al ₂ O ₃	<50 nm (TEM)	10 wt. % in H ₂ O	642991-100ML
Titanium(IV) oxide nanopowder	TiO ₂	~21 nm	≥99.5% trace metals basis	718467-100G
Titanium(IV) oxide, mixture of rutile and anatase nanopowder	TiO ₂	<100 nm (BET) <50 nm (XRD)	99.5% trace metals basis	634662-25G 634662-100G
Titanium(IV) oxide, mixture of rutile and anatase dispersion nanoparticles	TiO ₂	~21 nm (primary particle size of starting nanopowder) <150 nm (DLS)	99.9% trace metals basis/ 33-37 wt. % in $\rm H_2O$	700347-25G 700347-100G
Zirconium(IV) oxide nanopowder	ZrO ₂	<100 nm (TEM)	-	544760-5G 544760-25G
Zirconium(IV) oxide, dispersion nanoparticles	ZrO ₂	<100 nm (BET)	10 wt. % in H ₂ O	643025-100ML

Mesoporous Materials

Name	Composition	Property	CAT. NO.
Carbon, mesoporous	on, mesoporous c particle size distribution 45 µm ±5, average pore diameter 100 Å ±10 Å (typical) pore volume 0.5 cm³/g (typical), spec. surface area 150-250 m³/g		699640-5G 699640-25G
Carbon, mesoporous nanopowder	; nanopowder c particle size <500 nm (DLS), average pore diameter 64 Å (typical) total pore volume 0.342 cm³/g (typical), spec. surface area 150-250 m²/g		699632-5G 699632-25G
Carbon, mesoporous hydrophilic pore surface	с	mesoporosity >0.4 cm³/g, spec. surface area >300 m²/g (BET) mesopore surface area ≥130 m²/g	702110-5G
Carbon, mesoporous hydrophobic pore surface	с	mesoporosity 0.4-0.7 cm³/g microporosity 0-0.2 cm³/g, spec. surface area 150-500 m²/g (BET)	702102-5G
Silica, mesostructured MCM-41 (hexagonal)	SiO ₂	pore size 2.3-2.7 nm pore volume 0.98 cm³/g, spec. surface area ~1000 m²/g (BET)	643645-5G 643645-25G
Silica, mesostructured MSU-H (large pore 2D hexagonal)	SiO ₂	pore size ~ 7.1 nm pore volume 0.91 cm³/g, spec. surface area ~750 m²/g (BET)	643637-5G 643637-25G
Silica, mesostructured MSU-F (cellular foam)	SiO ₂	pore volume 2.31 cm³/g, spec. surface area 562 m²/g	560979-10G
Silica, mesostructured HMS (wormhole)	SiO ₂	particle size 3.05 μm (avg.), pore size 3.9 nm (avg.) pore volume 1.76 cm ³ /g, spec. surface area 910 m ² /q	541036-5G 541036-25G

ナノ材料の毒性スクリーニング方法

Gold Nanomaterials

金ナノ材料の詳細については sigma-aldrich.com/nano-jp から「金ナノ構造体」ページをご覧ください。

Name	Composition	Dimension	Concentration	CAT. NO.
Gold nanopowder	Au	particle size <100 nm	-	636347-1G
Octanethiol functionalized gold nanoparticles	-	particle size 2 - 4 nm (DLS)	2 % (w/v) in toluene	660426-5ML
Dodecanethiol functionalized gold nanoparticles	-	particle size 3 - 5 nm (TEM)	2 % (w/v) in toluene	660434-5ML
1-Mercapto-(triethylene glycol) methyl ether functionalized gold nanoparticles	-	particle size 3.5 - 5.5 nm (TEM)	2 % (w/v) in absolute ethanol	694169-5ML
(11-Mercaptoundecyl)tetra(ethylene glycol) functionalized gold nanoparticles	-	particle size 3.5 - 5.5 nm (TEM)	2 % (w/v) in $\rm H_2O$	687863-5ML
Gold nanorods amine terminated $\lambda_{abs} absorption 808 \ nm$	Au	diameter 10 nm	1.8 mg/mL in H_2O	716871-1ML
Gold nanorods carboxyl terminated $\lambda_{abs}absorption 808 \ nm$	Au	diameter 10 nm	1.8 mg/mL in H_2O	716898-1ML
Gold nanorods methyl terminated $\lambda_{abs}absorption 808 \ nm$	Au	diameter 10 nm	1.8 mg/mL in H ₂ O	716901-1ML
Gold microrods	Au	diameter 200 nm	50 μg/mL in H₂O	716960-10ML

Silver Nanomaterials

銀ナノ材料の詳細については sigma-aldrich.com/nano-jp から「銀ナノ粒子」ページをご覧ください。

Name	Composition	Particle Size	Concentration	CAT. NO.
Silver, nanoparticle dispersion	Ag	10 nm (TEM)	0.02 mg/mL in aqueous buffer	730785-25ML
Silver, nanoparticle dispersion	Ag	20 nm (TEM)	0.02 mg/mL in aqueous buffer	730793-25ML
Silver, nanoparticle dispersion	Ag	40 nm (TEM)	0.02 mg/mL in aqueous buffer	730807-25ML
Silver, nanoparticle dispersion	Ag	60 nm (TEM)	0.02 mg/mL in aqueous buffer	730815-25ML
Silver, nanoparticle dispersion	Ag	100 nm (TEM)	0.02 mg/mL in aqueous buffer	730777-25ML

ファインケミカル事業部 Tel:03-5796-7340 Fax:03-5796-7345 E-mail:safcjp@sial.com

材料科学研究でお困りのことはございませんか?

Material Matters

材料科学研究のための Aldrich[®] 季刊テクニカルニュースレター

世界の第一線研究者による最新トピックスやレビューをご紹介します

バックナンバータイトル

- ●ナノ材料の応用最前線(2-1)
- ●3次元ナノおよびマイクロ構造(3-1)
- ●ナノスケール表面改質(3-2)
- ●生体材料(3-3)
- ●ナノ材料とその合成方法(4-1)
- ●先端セラミック材料(4-2)
- 有機および分子エレクトロニクス(4-3)
- ●代替エネルギー 2(4-4)
- ●最新高分子合成(5-1)
- ●ナノ材料(5-2)
- ●生物医学用材料(5-3)

定期送付のお申し込みは下記 URL から

http://www.sigma-aldrich.com/mscatalog-jp

または、「Material Matters 定期送付希望」と明記の上、sialjp@sial.com へ電子メールにてご連絡ください。

©2010 Sigma-Aldrich Co. All rights reserved. SIGMA, SAFC, SIGMA-ALDRICH, ALDRICH, FLUKA, and SUPELCO are trademarks belonging to Sigma-Aldrich Co. and its affiliate Sigma-Aldrich Biotechnology, L.P. Material Matters and Lumidot are trademarks of Sigma-Aldrich Biotechnology LP and Sigma-Aldrich Co. RESOMER is a registered trademark of Boehringer-Ingelheim Pharma GmbH & Co. KG.

・本カタログに掲載の製品及び情報は2011年2月1日現在の内容であり、収載の品目、製品情報、価格等は予告なく変更される場合がございます。

最新の情報は、弊社Webサイト(sigma-aldrich.com/japan)をご覧ください。

掲載価格は希望納入価格(税別)です。詳細は販売代理店様へご確認ください。

弊社の試薬は試験研究用のみを目的として販売しております。医薬品、家庭用その他試験研究以外の用途をご検討の場合は、ファインケミカル事業部に相談ください。

シグマ アルドリッチ ジャパン株式会社

アナリティカル&ケミストリー事業部

〒140-0002 東京都品川区東品川2-2-24 天王洲セントラルタワー4F
 製品に関するお問い合わせは、弊社テクニカルサポートへ
 TEL:03-5796-7330 FAX:03-5796-7335
 E-mail: sialjpts@sial.com
 在庫照会・ご注文方法に関するお問い合わせは、弊社カスタマーサービスへ
 TEL:03-5796-7320 FAX:03-5796-7325

http://www.sigma-aldrich.com/japan

お問い合わせは下記代理店へ

SAJ1307 2011.2

