# **Material Matters**<sup>™</sup> Vol. 3, No. 3



# 生体材料

# **Biomaterials**



Better living through Chemistry

(生体)材料科学における 「クリック」ケミストリー 自己組織化単分子層と表面化学 骨組織再生工学





Ilya Koltover, Ph.D. Aldrich<sup>®</sup> Materials Science Sigma-Aldrich<sup>®</sup> Corporation

# はじめに

今回お届けする2008年第3号のMaterial Matters<sup>™</sup>では「生体材料」を特集しました。 生体材料は、生体系と接触して利用される合成材料や天然材料を扱う研究分野で す。この分野は学際的な分野であり、材料科学のほかに、化学、生物学、医学といっ た分野に関連しています。さらに、生体材料には「人間に関わる」というユニーク な側面があります。診療と診断を向上させて人間の生活の質に直接影響を与えると いう点において、これに匹敵するほかの材料研究分野はまずありません。既に医療 に活かされている生体材料研究の成果もあります。たとえば、構造生体材料研究の 過去50年にわたる絶え間ない進歩によって、歯科インプラントや人工股関節の品 質は大きく向上しています。そして今まさにわれわれの生活に影響を及ぼしつつあ る例として、薬物を封入してその放出速度を制御する新規高分子生体材料が、「ハ イテク」ピルの設計や心臓血管用インプラント表面の被覆に利用されています。さ らに、個々の患者の遺伝子型に合わせて治療をカスタマイズするための組織工学用 足場材料、遺伝子送達デバイス、バイオチップなど、この研究分野では生体材料の より高度な応用が実現しつつあります。

現代の生体材料は複雑になりつつあり、新たな材料の作成(合成、製造、加工)の ほか、完成した生体材料の分析や生体系との相互作用の解析に関する難題が生じて います。本号では、ノースウェスタン大学の研究者が、生体分子や生物との付着を 防ぐ生体材料表面の新しい調製法を説明します。また、日本の物質・材料研究機構 の有賀博士とHill博士が、機能性生体材料の薄膜を調製する革新的かつ多用途な方 法である交互積層法を説明します。p.14の記事では、オランダのネイメーヘン大学 とEncapson B.V.の研究者が、生体材料の制御的ボトムアップ合成のビルディングブ ロックとして利用できるデザイナー高分子を合成するための「クリック」ケミスト リーの応用を議論します。生体材料の評価に関する分野ではシカゴ大学のMrksich 教授が、バイオチップの表面などの詳細な化学組成の測定に利用できる質量分析技 術 SAMDI-TOFを説明します。最後は、ドイツのライプツィヒ大学のHuster教授と Pretzsch教授が、現在の再生医療の研究の中核をなすきわめて複雑な機能性生体材 料である人工骨組織の特性を明らかにするための固体 NMRの応用を説明します。

Material Matters<sup>™</sup>では、各生体材料研究分野に役立つSigma-Aldrich®製品のリスト が各記事の後に掲載されています。材料科学研究用の材料をお探しであれば、 sigma-aldrich.co.jp/aldrich/ms/をご覧ください。Material Matters<sup>™</sup> に関するご意 見やご質問、製品のご提案については sialjpts@sial.com までご連絡ください。

# Material Matters

Vol. 3 No. 3

### 目 次

#### 生体材料

| はじめに                           | 2  |
|--------------------------------|----|
| 表紙について                         | 2  |
| "Your Materials Matter."       | 3  |
| 生体模倣型の防汚性 PEG 被膜               | 4  |
| 交互積層法                          | 9  |
| (生体) 材料科学における<br>「クリック」 ケミストリー | 14 |
| 自己組織化単分子層と表面化学                 | 19 |
| 骨組織再生工学                        | 24 |

容量と価格は**sigma-aldrich.com** をご覧下さい

#### 表紙について

現在、研究者は医療用器具の特性を向上させる機能性生体材料の新たな製造方法の 開発に取り組んでいます。9ページの記事に記載されている交互積層法(LbL: Layer-by-Layer self-assembly)は、機能性生体材料の薄膜を製造する有用な方法です。 LbL法では、正の電荷をもつポリマーと負の電荷をもつポリマーを交互に溶液積層 させて、医療用器具(ステントなど)の表面や徐放性カプセル(ピルなど)の壁面に 多層膜(表紙の図参照)を形成することができます。帯電した薬物や生体分子(タン パク質、DNA)をLbL膜に組み込むことができ、たとえば、表紙に示されているカ チオン性のポリ(塩化ジアリルアンモニウム)は、アニオン性のDNAと交互に積層 することができます。この膜は封入されたDNAを放出できるため、遺伝子送達担体 として機能します。LbL用途向けのポリマーのリストについては、12ページの製品 リストをご覧ください。

本カタログに掲載の製品及び情報は2008年12月 現在の内容であり、収載の品目、製品情報等は予 告なく変更される場合がございます。予めご了承 ください。製品のご注文に際し、価格、在庫の確 認は裏表紙に記載の弊社カスタマーサービスまで お問合せください。なお、米国Webサイト (sigma-aldrich.com)の製品検索でも日本円と在 庫状況をご確認いただけます。

#### "Your Materials Matter."



San Suran

材料科学研究に有用な化合物の情報を募集しております。「こんな物質を探している」、「こんな製品があればいいのに」といったご意見がございましたら、 sialjpts@sial.comまでご連絡ください。

Joe Porwoll, President Aldrich Chemical Co., Inc.

#### N-Hydroxyethyl acrylamide — Tool for Lab-On-A-Chip Research

スタンフォード大学のAnnelise Barron 教授から、N-ヒドロキ シエチルアクリルアミド(N-hydroxyethyl acrylamide HEAA) の製品化のご提案をいただきました。これは、ラボオンチッ プデバイスのマイクロチャネルの壁面コーティングや分離媒 体として有用なポリマーの合成に利用できるモノマーです。 水中でHEAAをラジカル重合させて合成される親水性のポリ -N-ヒドロキシアクリルアミド(pHEAA)は、ガラスや石英ガ ラスのマイクロチャネルに吸着して安定な被膜を形成し、優 れた生体分子分離能を付与します。pHEAAの被膜は電気浸 透流を防止し、マイクロ流体チャネル内壁への生体分子の非 特異的な吸着を大幅に抑制します。pHEAAを使ったマイク ロキャピラリー電気泳動によって、500塩基を超えるDNA断 片の分離と塩基配列の決定に成功しています<sup>1,2</sup>。

#### References:

697931-100ML

- Albarghouthi, M.N., Buchholtz, B.A., Huiberts, P.J., Stein, T.M., Barron, A.E. *Electrophoresis* 2002, 23, 1429.
- (2) Fredlake, C.P., Hert, D.G., Kan, C.W., Chiesl, T.N., Root, B.E., Forster, R.E., Barron, A.E. Proc. Natl. Acad. Sci. USA 2008, 105, 476.
  - H<sub>2</sub>C N OH

#### N-Hydroxyethyl acrylamide (HEAA), 97%

100 mL

Page

6,17

# 材料カテゴリー 内容 官能基化された PEG 単官能性、ホモニ官能性またはヘテロニ官能性のポリ (エチレングリコール) ポリマー

本号で特集する生体材料

| 高分子電解質                        | 交互積層法(LbL:Layer-by-Layer self-assembly)に利用されるアニオン性ポリマー<br>およびカチオン性ポリマー | 12 |
|-------------------------------|------------------------------------------------------------------------|----|
| 「クリック」ケミストリーでの生体<br>材料作成用ポリマー | アジド基またはアルキン基を導入したポリマー                                                  | 17 |
| ポリマーソームを形成するポリマー              | 両親媒性ブロック共重合体                                                           | 17 |
| 分子自己組織化用材料                    | 金表面に自己組織化単分子層(SAMs)を作製するためのアルキルチオール                                    | 22 |
| 生体適合性セラミックス                   | 生体材料および生物医学研究に一般的に用いられている金属酸化物セラミック粒子                                  | 26 |
| 生体適合性金属                       | 金属チタン(ワイヤー、ホイル、ロッド、スポンジ)                                               | 27 |

## ポリ (エチレングリコール) をベースとする 防汚性の生体模倣型グラフトポリマー被膜



Lesley M. Hamming and Prof. Phillip B. Messersmith Biomedical Engineering Department Northwestern University Evanston, IL philm@northwestern.edu

天然材料や人工材料が使用されている環境ではほぼ例外な く、表面への生物学的物質の蓄積が避けられません。生体分 子や生物が表面に付着したとしてもほとんど影響を及ぼさな いこともありますが、デバイスと構造の性能や安全性を維持 するには、生物付着を最小限に抑えるか制御する必要があり ます。たとえば、医学的環境では、タンパク質、細胞、病原 体といった生体液の成分が表面に強力に付着しやすく、その ために性能が変化して危険な結果をもたらすおそれがありま す。例えば、カテーテルに微生物がコロニー形成することに よって引き起こされる尿路感染は、最も頻度の高い院内感染 です」。また、植込み型医療器具も微生物腐食(MIC:

microbially influenced corrosion) に弱く、置換手術が必要と なり感染のリスクが増大します<sup>2</sup>。この他に生物付着を起こ しやすい表面としては船体が挙げられます。海洋生物やその 分泌物で覆われることによって、推進効率が低下し、燃費の 低下を引き起こします<sup>3</sup>。本稿では、表面にポリマーを結合 させる生体模倣の方法をはじめとした、ポリマーをグラフト することによって表面への生物付着を防ぐ方法を簡単に紹介 します。

生物付着を防ぐ一般的な方法は、図1に示すように表面への 防汚性ポリマーのグラフト化です⁴。このようなグラフトさ せたポリマーシステムの重要な点は、防汚性ポリマーの化学 的特性、分子量および構造のほか、表面にポリマーをグラフ トさせる方法にあります。最も広範に検討されている防汚性 ポリマーのひとつにポリ (エチレングリコール) (PEG) があ りますが、PEGは医薬品や薬物送達に昔から用いられている 毒性の低い水溶性ポリマーですう。大学や企業の研究者は、 直接合成したり購入することで PEG を入手することができま す(p.6の表参照)。そしてそのPEGに適切な化学的誘導体化 を行って表面にグラフトさせると、タンパク質、細胞、細菌 の非特異的な吸着を抑制することができます。PEGを固定化 した表面がタンパク質や細胞の吸着を抑制する熱力学的メカ ニズムや分子メカニズムは完全には解明されていませんが、 数々の研究によって、グラフトされたポリマーの立体障害効 果、鎖長、グラフト密度、鎖の立体配座、親水性がタンパク 質の付着を予防する重要な役割を果たしていることが確認さ れています 6-8。



図1. 基板 (灰色)の特定の官能基 (三角)に防汚性ポリマー (青線)を固定 したグラフト化防汚性ポリマーシステムの図。ポリマーがタンパク質 (赤)、細胞 (青)、細菌 (緑)の表面吸着を阻む物理的な障壁になります。

防汚性ポリマーは、ふたつの基本的な方法で表面にグラフト させることができます。graft-to法では、アンカー基を導入 したポリマーをあらかじめ合成し、これを表面に吸着させま す。対照的に、graft-from法ではグラフト化した開始剤から 直接ポリマーを伸張させます。graft-to系は膜厚が通常単分 子層レベル (数ナノメートル) であり、溶媒からポリマーを 物理吸着または化学吸着させて形成させます。graft-from系 の場合、膜厚がはるかに厚いものの(10~100ナノメートル 以上)、適切な開始剤で基板をあらかじめ修飾する必要があ ります。しかし、いずれの方法を用いるにも、物理吸着また は化学吸着による相互作用でポリマーを表面に固定できるこ とが不可欠となります。物理吸着では比較的弱いファンデル ワールス力や疎水性の力によってポリマーが表面に結びつけ られており、その例としてプルロニック型ブロック共重合体 の疎水性基材への吸着が挙げられます。化学吸着では、通 常、ポリマーの基材への結合がさらに強固であり、その例と して金-チオラート10、金属酸化物-シラン結合11、静電的相 互作用12が挙げられます。

近年、生物の利用している方法をヒントにすることで、ポリ マーを表面にグラフトさせる新たな方法を見出すようになっ ています。特に興味深いのは海洋接着タンパク質に存在する 特異なアミノ酸で、湿った表面への安定かつ強固な結合に利 用されています。イガイ類は、湿った環境や乱流の環境の中 でも岩、木、動物、貝殻といったさまざまな材料の表面に強 く接着します。この貝の足糸の先端粘膜円盤と基板との接触 面付近に存在するタンパク質中には、アミノ酸3,4-ジヒドロ キシフェニルアラニン (DOPA) (D9628) が最大27 mol%の 濃度で存在します (図2)<sup>13</sup>。原子間力顕微鏡による単分子レ ベルの強度測定によって示されたように<sup>14</sup>、DOPAは優れた 接着性をもたらし、有機物表面や無機物表面と強力な化学的 相互作用を形成します。

ALDRICH



図2. 生体をヒントにした防汚性ポリマーを表面にグラフトする方法。 (a) 基材に接着した貝の画像、(b) アミノ酸3,4-ジヒドロキシフェニルア ラニン (DOPA) の含有量が最も多いイガイ類の接着タンパク質 (Mefp3, Mefp5) の界面部と足糸の先端粘膜円盤の図、(c) DOPAの化学構造、(d) アンカー部分の接着ペプチドと防汚性PEG ポリマーを示した graft-to 生体 模倣型ポリマーの例 (e) 表面に結合した生体模倣型開始剤と重合化PEG ポリマーを示した graft-from 生体模倣型ポリマーの例

最近、防汚性ポリマーを表面に結合させるさまざまな方法に DOPAの化学的多用性と堅牢性が利用されています<sup>15</sup>。DOPA 含有ペプチドを結合させた末端モノメトキシ化PEGなどのポ リマーは、PEGの優れた防汚性と、graft-to法によって簡単 に結合させることができる接着性のアンカーを兼ね備えてい ます<sup>16</sup>。1~3個のDOPA残基を使って誘導体化した鎖状PEG ポリマー(図2)は、酸化チタン(TiO<sub>2</sub>)基板や金基板に吸着 することが見出され<sup>17</sup>、光導波路分光法(OWLS: optical waveguide spectroscopy) と分光エリプソメトリー (ELM: spectroscopic ellipsometry) で測定されたように血清成分に対 する優れた防汚性を示しました。血清のin-situ吸着から、対 照試料のTiO,表面には250 ng/cm<sup>2</sup>の血清タンパク質が蓄積 していたのに対して、mPEG-DOPA。で修飾したTiO,表面に蓄 積していた血清タンパク質はわずか1 ng/cm<sup>2</sup>未満であること がわかり、DOPAを結合させたPEGの優れた防汚性が確認さ れました17。さらに高性能なペプチドアンカーも開発されて おり、たとえば、ムラサキイガイのfoot protein-1のデカペ プチド類縁体をPEGに結合させ、これを用いて金表面に細胞 接着防止機能を付与しています (図3)16。ペプチドを結合さ せたポリマーの合成は、厳密なアミノ酸の配列を求める場合 は固相法を利用し、特に厳密なアミノ酸配列を必要としない ペプチドオリゴマーアンカーを合成する場合はモノアミンを 導入したポリマーを開始点としてN-カルボキシ無水物モノ マーを重合させます。最近、生物学的な鉄キレート物質であ るanachelinからヒントを得て、カテコールを基盤とする接 着性のアンカーを同様に用いたところ<sup>18</sup>、表面にPEGを結合 させる際に用いることのできるアンカー基の種類を大幅に増 やすことができました。



**図3.** 未処理の金 (左上) と、イガイ類接着タンパク質類縁体のデカペプチ ドAla-Lys-Pro-Ser-Tyr-Hyp-Hyp-Thr-DOPA-Lys で誘導体化した PEG をグラフ トした金 (右下) への繊維芽細胞の接着

graft-from法も防汚性被膜の作製に利用されており、表面に 結合した開始剤からPEGマクロモノマーを重合させる方法が とられています。例えば、開始剤を連結させた自己組織化単 分子層(SAMs)で改質した金表面から、原子移動ラジカル重 合(ATRP)を利用してアクリレートで修飾したPEGを重合さ せています<sup>19</sup>。得られたグラフトポリマー被膜は、このほか の大抵のgraft-from被膜と同じようにgraft-to被膜よりもは るかに厚く、タンパク質や細胞の付着を防止する優れた効果 を有しています。生体模倣型アンカーに関してはドーパミン をベースとするATRP開始剤が合成され、金属酸化物表面に 防汚性被膜が調製されています<sup>20</sup>。この場合、DOPAの側鎖 にあるカテコール残基を使って酸化チタンやステンレス鋼表 面に吸着させ、ここからATRPを介してPEGマクロモノマー を重合し、厚みのある防汚性被膜が得られています。

最近、防汚性ポリマーでさまざまな材料を修飾できるきわめ て汎用性の高いハイブリッド型graft-from/graft-to法が報告 されています<sup>21</sup>。この方法は2段階であり、最初の段階では アルカリ性条件下でドーパミン塩酸塩(H8502)を重合させ る方法を利用します。この方法で、ほぼすべての材料表面に 薄い (50 nm以下) 接着性ポリドーパミン被膜を作製できま す。この被膜加工は容易に入手できる材料を使用して簡便な ディップコーティングを利用しているため、複雑な形状物に も行うことができます。ポリドーパミン被膜の作製に利用す る反応は、イガイ類接着タンパク質の固化やメラニン色素の 生成の際に起こる反応とよく似ています。得られる被膜は求 核剤に対して潜在的な反応性を有しており、アミンやチオー ルを導入したPEGを、ポリドーパミンで被覆した表面に共有 結合でグラフトする次のステップに好都合です (図4)。この 新しい材料改質法は、面倒な表面作製段階を必要とせず、 graft-from(1段階目)法とgraft-to(2段階目)法の二つのス テップによるものであり、表面に防汚性を付与する簡便で経 済的な汎用性の高い方法となるでしょう。



図4. 二段階の方法で基板表面に防汚性ポリマーをグラフトさせる簡便な 手法。(a) 基板表面にてドーパミンを重合させたのちに、アミンまたはチ オールを有する PEG を結合させる表面グラフト法の模式図。この方法を 用いることによって、無機材料や有機材料をはじめとするさまざまな表 面に PEG をグラフトした防汚性被膜を作製することができます。(b) ポリ ドーパミンと PEG-NH<sub>2</sub>による各種基板の改質前(黒のバー)と改質後(赤 のバー)の細胞接着を標準化したグラフ。ガラス、チタン、金、窒化ケイ 素、テフロン(PTFE)、ポリウレタン(PU1、PU2)、ポリスチレン(PS)を それぞれ表しています。

PEGをグラフトした被膜を利用した、表面への海洋生物の付着阻害についても検討されていて<sup>22-24</sup>、超分岐フルオロポリマー -PEG 複合材料<sup>22</sup>、側鎖に PEG を有する疎水性ポリマー <sup>23</sup>、鎖状 PEG<sup>24</sup> といったさまざまなデザインのグラフトポリマーが使用されています。これらの研究では現在まで珪藻(*Navicula perminuta*)と緑藻類(*Ulva linza*)の付着に焦点が当てられており、PEG 含有量の増大に応じて防汚性能が向上し、標準的なシリコーン系防汚コーティングよりも優れた性能を示します。現在、シリコーン系防汚コーティングはも優れた性能を示します。現在、シリコーン系防汚コーティングは生物付着物の流体力学的な除去のするために水産業で利用されていますが、このコーティングはあらゆる海洋生物付着に対して完全に有効というわけではなく、速度の遅い船舶ではあまり効果を発揮しません。さらに開発を進めることによって、PEG をベースとするコーティングは海洋環境で高い防汚性能を発揮する可能性があります。

以上をまとめると、PEGをグラフトした被膜はタンパク質、 細胞、細菌、このほかの生物の付着を効果的に防ぐことがで きます。生物からヒントを得たアンカー部分によって、PEG を表面に結合させる簡便、多用途かつ確実な方法が見出され ました。このPEG被膜を使って植込み型医療器具、コンタク トレンズ、外科用器具、バイオセンサー、バイオセパレー ション向けの電気泳動用キャピラリーのほか、付着を起こし やすい水処理設備や船体の表面への付着をコントロールする ことができます。

#### References

(1) Brosnahan, J.; Jull, A.; Tracy, C. The Cochrane Database of Systematic Reviews 2004, Art. no. CD004013. (2) Beech, I. B.; Sunner, J. A.; Arciola, C. R.; Cristiani, P. International Journal of Artificial Organs 2006, 29, 443. (3) Anderson, C.; Atlar, M.; Callow, M.; Candries, M.; Milne, A.; Townsin, R. L. Journal of Marine Design and Operations 2003, B4, 11. (4) Nath, N.; Hyun, J.; Ma, H.; Chilkoti, A. Surface Science 2004, 570, 98 (5) Polyethylene Glycol; Harris, J. M., Ed.; Plenum: New York, 1992. (6) Gombotz, W. R.; Guanghui, W.; Horbett, T. A.; Hoffman, A. S. Journal of Biomedical Materials Research 1991, 25, 1547. (7) Jeon, S. I.; Lee, J. H.; Andrade, J. D.; De Gennes, P. G. Journal of Colloid and Interface Science **1991**, *142*, 149. (8) McPherson, T.; Kidane, A.; Szleifer, I.; Park, K. Langmuir **1998**, *14*, 176. (9) Neff, J. A.; Caldwell, K. D.; Tresco, P. A. J. *Biomed.* Mater. Res. 1998, 40, 511. (10) Lu, H. B.; Campbell, C. T.; Castner, D. G. Langmuir 2000, 16, 1711. (11) Jo, S.; Park, K. Biomaterials 2000, 21, 605 (12) Kenausis, G. L.; Voros, J.; Elbert, D. L.; Huang, N.; Hofer, R.; Ruiz-Taylor, L.; Textor, M.; Hubbell, J. A.; Spencer, N. D. *J. Phys. Chem. B* **2000**, *104*, 3298. (13) Sagart, J.; Sun, C.; Waite, J. H. In *Biological Adhesives*; Smith, A. M., Callow, J. A., Eds.; Springer-Verlag: Berlin, 2006. (14) Lee, H.; Scherer, N. F.; Messersmith, P. B. Proceedings of the National Academy of Sciences 2006, 103, 12999. (15) Dalsin, J. L.; Messersmith, P. Materials Today 2005, 8, 38. (16) Dalsin, J. L.; Hu, B.-H.; Lee, B. P.; Messersmith, P. B. Journal of the American Chemical Society 2003, 125, 4253. (17) Dalsin, J.; Tosatti, S.; Vörös, J.; Textor, M.; Messersmith, P. B. Langmuir 2005, 21, 640 (18) Zuercher, S.; Waeckerlin, D.; Bethuel, Y.; Malisova, B.; Textor, M.; Tosatti, S.; Gademann, K. *Journal of the American Chemical Society* **2006**, 128, 1064. (19) Ma, H.; Hyun, J.; Stiller, P.; Chilkoti, A. Adv. Mater. 2004, 16, 338. (20) Fan, X.; Lin, L.; Dalsin, J. L.; Messersmith, P. B. Journal of the American Chemical Society 2005, 127, 15843. (21) Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Science 2007, 318, 426. (22) Gudipati, C. S.; Finlay, J. A.; Callow, J. A.; Callow, M. E.; Wooley, K. L. Langmuir 2005, 21, 3044. (23) Krishnan, S.; Wang, N.; Ober, C. K.; Finlay, J. A.; Callow, M. E.; Callow, J. A.; Hexemer, A.; Sohn, K. E.; Kramer, E. J.; Fischer, D. A. Biomacromolecules 2006, 7, 1449. (24) Statz, A. R.; Finlay, J. A.; Dalsin, J. L.; Callow, M.; Callow, J. A.; Messersmith, P. B. Biofouling 2006, 22, 391.

#### 官能基化ポリ(エチレングリコール)

さまざまな分子量や末端基を有するポリ(エチレングリコール)(PEG)ポリマーをご用意しています。以下の表は、生体材料研究に一般的に利用されている官能基化鎖状 PEG 分子の一部を示したものです。このほかの分子量、末端基のほか、官能基化されていない PEG ポリマー、分岐(星型) PEG ポリマーなど、PEG ポリマーの全製品リストについては、*sigma-aldrich.co.jp/aldrich/polymer*をご覧ください。

| End-function (R)    | Structure                                                                                              | Molecular Weight<br>(Avg. M <sub>n</sub> ) | Prod. No.   |
|---------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------|
| Monofunctional PEGs |                                                                                                        |                                            |             |
| -NH <sub>2</sub>    | H <sub>3</sub> CO $\left[ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} \right]_n$ NH <sub>2</sub> | 2,000                                      | 06676-1G    |
|                     |                                                                                                        | 5,000                                      | 06679-1G    |
|                     |                                                                                                        |                                            | 06679-5G    |
|                     |                                                                                                        | 10,000                                     | 07965-1G    |
| -OH                 | <sup>Н</sup> ₃С√о∕∕ОН                                                                                  | 1,000                                      | 17738-250G  |
|                     | [- ] <sub>n</sub>                                                                                      |                                            | 17738-1KG   |
|                     |                                                                                                        | 2,000                                      | 202509-5G   |
|                     |                                                                                                        |                                            | 202509-250G |
|                     |                                                                                                        |                                            | 202509-500G |
|                     |                                                                                                        | 5,000                                      | 81323-250G  |
|                     |                                                                                                        |                                            | 81323-1KG   |

ALDRICH

a D

| End-function (R)       | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Molecular Weight<br>(Avg. M <sub>n</sub> ) | Prod. No.     |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------|
| -COOH                  | H <sub>3</sub> C[O], O<br>H <sub>3</sub> C[ | 2,000                                      | 17928-5G      |
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,000                                      | 17929-1G      |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 17929-5G      |
| <i>N</i> -succinimidyl | $H_3C_0 \rightarrow 0 \rightarrow$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2,000                                      | 41214-1G      |
| –SH                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,000                                      | 11124-250MG   |
|                        | H <sub>3</sub> CO ( N H SH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            | 11124-1G      |
|                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20,000                                     | 63753-250MG   |
| Maleimide              | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,000                                      | 63187-1G      |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 63187-5G      |
| Methacrylate           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,100                                      | 447951-100ML  |
|                        | H <sub>2</sub> C<br><sub>CH<sub>3</sub></sub> O<br><sub>n</sub><br><sup>H</sup> 2C<br><sub>CH<sub>3</sub></sub> O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | 447951-500ML  |
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2,080, 50 wt.% in $\rm H_2O$               | 457876-250ML  |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 457876-1L     |
| Homobifunctional PEGs  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            |               |
| -NH <sub>2</sub>       | H-N - O - NH2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2,000                                      | 14501-250MG   |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 14501-1G      |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,000                                      | 14502-250MG   |
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | 14502-1G      |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6,000                                      | 14504-250MG-F |
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                            | 14504-1G-F    |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000                                     | 14508-250MG   |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                            | 14508-1G      |
| –COOH                  | $H_{O} = H_{O} = H_{O$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2,000                                      | 14565-1G      |
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3,000                                      | 14567-250MG   |
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,000                                      | 14569-1G      |
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 10,000                                     | 14571-1G      |
| <i>N</i> -succinimidyl |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 3,000                                      | 15961-1G      |
| Acrylate               | $H_2C = \left[ O \right]_n O = CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2,000                                      | 701971-1G     |
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,000                                      | 701963-1G     |
| Methacrylate           | $H_2C \underbrace{\bigcirc}_{CH_3} C \underbrace{\bigcirc}_n C \underbrace{\bigcirc}_n CH_2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2,000                                      | 687529-1G     |
|                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6,000                                      | 687537-1G     |
| –SH                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1,500-1,800                                | 704369-1G     |
|                        | HS' Y Y J'SH —<br>n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3,400-3,600                                | 704539-1G     |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000–10,300                              | 705004-1G     |

バルク供給/スケールアップのご相談は… ファインケミカル事業部 Tel:03-5796-7340 Fax:03-5796-7345 E-mail:safcjp@sial.com

| R1                     | R2               | Structure                                                                                               | Molecular Weight<br>(Avg. M <sub>n</sub> ) | Prod. No.    |
|------------------------|------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------|--------------|
| –OH                    | -NH <sub>2</sub> |                                                                                                         | 3,000                                      | 07969-250MG  |
|                        |                  | [ ] <sub>n</sub>                                                                                        |                                            | 07969-1G     |
|                        |                  | _                                                                                                       | 5,000                                      | 672130-100MG |
|                        |                  |                                                                                                         |                                            | 672130-500MG |
|                        |                  | _                                                                                                       | 10,000                                     | 671924-100MG |
|                        |                  |                                                                                                         |                                            | 671924-500MG |
| –OH                    | –COOH            | 0<br>   1                                                                                               | 3,000                                      | 670812-100MG |
|                        |                  | H O OH                                                                                                  |                                            | 670812-500MG |
|                        |                  | _                                                                                                       | 5,000                                      | 670936-100MG |
|                        |                  |                                                                                                         |                                            | 670936-500MG |
|                        |                  | _                                                                                                       | 10,000                                     | 671037-100MG |
|                        |                  |                                                                                                         |                                            | 671037-500MG |
| -NH <sub>2</sub>       | -COOH            |                                                                                                         | 3,000                                      | 671487-100MG |
|                        |                  | H <sub>2</sub> N H <sub>2</sub> N HCI                                                                   |                                            | 671487-500MG |
|                        |                  | _                                                                                                       | 5,000                                      | 671592-100MG |
|                        |                  |                                                                                                         |                                            | 671592-500MG |
| -COH                   | Maleimide        | <sup>™</sup> <sup>™</sup> <sup>™</sup> <sup>™</sup> <sup>™</sup> <sup>™</sup> <sup>™</sup> <sup>™</sup> | 3,000                                      | 579319-250MG |
| -соон                  | Maleimide        | O N N N N N N N N N N N N N N N N N N N                                                                 | 3,000                                      | 670162-250MG |
| N-succinimidyl         | Maleimide        |                                                                                                         | 3,000                                      | 670278-100MG |
| -COOH                  | Biotin           | HN HH H H H H H H H H H H H H H H H H H                                                                 | 3,000                                      | 669946-250MG |
| <i>N</i> -succinimidyl | Biotin           | HN = H + H + H + H + H + H + H + H + H + H                                                              | 3,000                                      | 670049-100MG |

# Aldrich<sup>®</sup> Materials Science Catalog

# Materials Science Catalog 2008-2010 (英語版) 好評配布中!

材料科学研究に必須の4,000品目を掲載

■ 代替エネルギー

- 金属及びセラミックス科学
- マイクロ/ナノエレクトロニクス
- 有機エレクトロニクス/フォトニクス
- 書籍、実験器具

- ナノ材料
- 高分子化学



カタログのご請求は下記アドレス、もしくはsialjpts@sial.comまで。 無料でお送りいたします! www.sigma-aldrich.co.jp/aldrich/mscatalog

sigma-aldrich.com/japan

### 交互(LbL)積層法、機能性生体材料を得るための 「温和かつ柔軟な」方法



Dr. Katsuhiko Ariga and Dr. Jonathan P. Hill

World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Japan ariga.katsuhiko@nims.go.jp

#### はじめに

科学者は機能性材料やシステムの開発に現在多くの時間と労 力を費やしています。一方、自然は何十億年もの時間をかけ て進化しており、その極めて高い機能性を生体材料に見るこ とができます。この圧倒的な開発時間の大きな差が影響して か、人工材料は生体材料に比してその機能の効率や特異性に おいて劣ることが少なくありません。このため、合理的な材 料設計の観点から、生体材料を組み込んだ機能材料開発には 大きなメリットがあると考えられます。残念ながら、生体材 料は人工デバイスの構成材として自然の中で進化したわけで はありませんので、加工に必要な過酷な化学的条件下や物理 的条件下では特性の低下や分解を来す傾向があります。よっ て、人工構造に効果的に生体材料を固定化するには、温和か つ柔軟な手法が必要となります。そのために、ラングミュア・ ブロジェット (LB) 膜や自己組織化単分子層 (SAMs) などに より生体膜様薄膜に生体材料を組み込む方法がとられます。 これらの膜は適当な媒体にはなりますが、時に操作が煩雑で あったり、また、応用物質に制限があったりして、必ずしも 広く適用される手法とはなりえません。最近、機能性分子を 薄膜として固定するための汎用性の高い温和かつ簡便な方法 として、交互積層法 (LbL: Layer-by-Layer self-assembly) が注 目されています<sup>1,2</sup>。本稿では、温和かつ柔軟なLbL法によっ て創製される機能システムの最近の進展を紹介します。

#### LbLの概要:生体材料に対して穏やかである理由と、 その程度

カチオン性高分子電解質とアニオン性タンパク質の積層を一 例として、LbL積層法の一般的なプロセスを図1aに示します。 負の電荷をもつ固体担体表面にカチオン性高分子電解質が吸 着すると通常は過剰吸着を起こし、表面の電荷が反転しま す。続いてアニオン性タンパク質を吸着させると、表面の電 荷が再び反転します。この表面の電荷反転機構を利用して、 層構造を連続的に作製できます。このメカニズムは電荷をも つさまざまな物質に適用できるため、使用できる生体材料の 選択肢はタンパク質、核酸、糖、ウイルス粒子など、きわめ て多岐にわたります。厚さナノメートルスケールの膜を作成 できるこの積層プロセスを、ビーカーとピンセットのみを使 用することで、温和な室温条件で水溶液を使って行うことが できるのです。LbL積層法の推進力は静電的相互作用に限定 されるとは限りません。水素結合や金属配位といったほかの 相互作用も積層に利用できます<sup>3</sup>。レクチンと糖との相互作 用などの生体分子特異的な相互作用を利用すると、さらに特 異的に膜を構築できる可能性があります<sup>4</sup>。

LbL積層法の革新の重要な節目となったのが、プロセスにテ ンプレート合成を取り入れたことです。図1bには、コロイ ド粒子を用いるLbL積層化と、その後の中空カプセルの作製 を示しています。この方法では、従来のLbL積層法と同じく LbL膜を連続的に積層しますが、コアとしてコロイド粒子を 用いる点で異なります。コアであるコロイド粒子を破壊する と中空カプセルが得られます。LbL積層法によって酵素の結 晶を高分子電解質で包んだのちに、酵素の結晶を溶かすとナ ノサイズのカプセルに多量の酵素が充填されます。LbL積層 法によって、テンプレートの多孔質アルミナの内部に生体材 料を積層したのちに、テンプレートを溶かすと生体材料から 成るマイクロチューブが形成されます<sup>7</sup>。



図1. LbL積層法のプロセス (a) 固体基板上; (b) コロイドコア上。 Ariga, K. et al. *Phys. Chem. Chem. Phys.* 2007, 9, 2319.© 2007, Royal Society of Chemistryより許可を得て転載。

#### バイオ関連の用途:リアクターとセンサー

LbL 膜構築の自由度の高さは、ある特定の連続反応用の薄膜 型酵素リアクターを作製するのに好都合です。図2は、グル コースオキシダーゼとグルコアミラーゼから成る二酵素型の リアクターを限外ろ過膜上に作製することに成功した例を示 しています<sup>®</sup>。基質のデンプン溶液をリアクターに通すと、 グルコアミラーゼによってデンプンのグルコースの結合が加 水分解されてグルコースが生成し、その後グルコースオキシ ダーゼによってグルコノラクトンと副生成物のH<sub>2</sub>O<sub>2</sub>に変換 されます。リアクターの効率は層の数、積層の順序、層の間 隔を調節して最適化することができます。



図2. LbL法で積層した複数の酵素から成るリアクター。 Ariga, K. et al. *Phys. Chem. Chem. Phys.* 2007, 9, 2319. © 2007, Royal Society of Chemistryより許可を得て転載。

グルコースオキシダーゼを使ってLbL積層法で作製した一酵 素型のリアクターの性能と、同じ酵素を含むLB膜の性能と を比較したところ、前者のほうがはるかに優れていました<sup>9</sup>。 前者は厚みを増大させても酵素反応の効率に変化が見られな かったのに対して、LB膜は厚みを増大させると酵素活性が劇 的に低下しました。LbL積層膜の高分子電解質層はLB膜の凝 縮脂質相よりも反応前駆体の浸透性が高いと考えられます。 また、単一成分型のこのLbL膜に対し、pHの変化に対する耐 久性、耐熱性、安定性についても試験しました。グルコース オキシダーゼのLbLリアクターは、これら全項目において安 定性の向上がみられました。高分子電解質の柔らかなクッ ションに酵素分子が適度に固定されているため、リアクター が外部要因を受けても立体配座の変化が抑えられた可能性が あります。

センサーへの応用は、生体材料のLbL積層膜の利用法として 最も重要です。LbL法では、電極やトランジスタなどのセン サー装置部品の固体表面に活性な構造をもつ酵素の薄膜を容 易に作製することができます。たとえば、Ruslingらはこの分 野の先駆的な研究を実施して最近の論文に報告しています<sup>10</sup>。 彼らは、DNAと酵素(ミオグロビンやシトクロムP450)を使っ てDNA損傷の検出システムを開発しました<sup>11</sup>。膜中の酵素 は、過酸化水素による活性化を受けてスチレンから代謝産物 の酸化スチレンを生じ、この酸化スチレンが同じ膜中の二本 鎖DNAと反応します。このプロセスはヒトの肝臓中での代 謝とDNA損傷を模倣していると考えることができます。 DNA損傷の検出にはRu錯体とCo錯体の電気化学に基づく方 形波ボルタンメトリーを利用しています。この方法には有機 化合物前駆体や代謝産物の毒性のin vitroスクリーニングに 広く利用できる可能性があります。

#### 医療への高度な応用

LbL法はきわめて簡便で汎用性が高いため、近い将来にはさ まざまな実用法が開発されると思われます。薬物送達や細胞 工学では生物医学への応用例が既に実現しています。

LbL法を使ってカプセル構造を作るさまざまな手法が開発されていますが、このカプセルは薬物の送達や放出を制御する担体として利用することができます<sup>12</sup>。たとえば、Lvovらは、 生体適合性の高分子電解質の微小な殻に、天然の二重らせん

構造を保持させたまま DNA を封入する独特の方法を考案し ています (図3)<sup>13</sup>。遺伝子送達ではDNAの分解が大きな問題 になっています。このため、環境に優しい材料で作製した適 切な担体にDNAを封入することが不可欠です。Lvovらの方法 では、MnCO<sub>3</sub>粒子をテンプレートのコアとして利用し、こ れをDNA溶液中に懸濁させます。撹拌したMnCO<sub>3</sub>/DNA混合 溶液にスペルミジン溶液を添加すると、水に不溶なDNA/ス ペルミジン複合体が MnCO<sub>3</sub> 粒子表面に析出します。続いて、 混合成分である MnCO<sub>3</sub>/DNA/スペルミジンコアを生体適合性 のポリアルギニンとコンドロイチン硫酸から成るLbL積層膜 で被覆します。その後、二段階でコアを溶かします。最初に、 重水素化された0.01 M HCI溶液でテンプレートのMnCO3粒 子を溶かすと、DNA/スペルミジン複合体を含む生体適合性 のカプセルが得られ、その次の段階でさらに0.1 M HCI溶液 で処理するとDNA/スペルミジン複合体が分解します。この 二番目のプロセスの後は、分子量の小さいスペルミジンがカ プセルの内部放出されるため、DNAが閉じ込められた生体 適合性のカプセルが残ります。閉じ込められた物質の高分子 電解質膜に対する透過性は、pHの変化、溶媒の追加、温度 の急激な上昇といった外部要因によって制御できるため、閉 じ込められたDNAの放出を制御することができます。



図3. LbL法で積層したカプセル中に閉じ込められたDNA。 Shchukin, D. G., et al. J. Am. Chem. Soc. 2004, 126, 3374. © 2004, American Chemical Societyより許可を得て転載。

平面LbL膜を薬物送達用途に利用することも提唱されていま す。たとえばLynnらは、分解性のカチオン性人工ポリマー と、高感度緑色蛍光タンパク質をコードするプラスミドDNA から成る最大100 nm厚のLbL膜をシリコン基板と石英基板 の表面に作製しています<sup>14</sup>。このカチオン性ポリマーを分解 すると、LbL膜からプラスミドDNAが放出されて転写が活性 化され、細胞内での高感度緑色蛍光タンパク質の高発現が促 進されます。近年、YuとArigaらは、材料の放出を制御でき る中空カプセルを内部に持つLbL膜を報告しました<sup>15</sup>。作製 した膜は「メソポーラスナノコンパートメントフィルム」と 呼び、シリカ粒子と中空のシリカカプセルで構成されていま

a D

ich.com/jap

ma-aldr

sigr

す(図4)。得られたメソポーラスナノコンパートメントフィ ルムは分子を封入・放出する特殊な機能を有しており、フィ ルムに埋め込まれた堅牢なシリカカプセルのメソ細孔チャネ ルを通じて、外部刺激を要さない水分子や薬物分子の自動調 節 ON-OFF 型の放出が実現されています。閉じ込められた分 子のON-OFF 型な放出には再現性が確認されており、これは 内包分子がメソ細孔チャネルから外部に蒸発する速度と内部 からメソ細孔チャネルに毛管浸透する速度が非平衡であるこ とに起因します。このナノコンパートメントフィルムを用い れば治療薬の段階的な放出が可能となり、これによって治療 薬の効果が改善される可能性があります。メソポーラスナノ コンパートメントフィルムは薬物投与法に新しい道を拓くこ とでしょう。



図4. メソポーラスナノコンパートメントフィルム。 Ji, Q. et al. *J. Am. Chem. Soc.* 2008, *130*, 2376. © 2008, American Chemical Societyより許可を得て転載。

LbL法を細胞工学に応用することは、大変魅力的なターゲット です。これに関するいくつかの先駆的な研究の成果がKotov らの最近の総説にまとめられています<sup>16</sup>。たとえば、Janと Kotovは、LbL膜が幹細胞技術に利用できる可能性があるこ とを示しており、カーボンナノチューブと高分子電解質から 成るLbL膜上で環境感受性の神経幹細胞をニューロスフェア と単細胞の両形態で分化させる研究を行っています<sup>17</sup>。 Benkirane-Jesselらは、ポリ-L-グルタミン酸(P4761)とポリ -L-リジン(P9404)から成るLbL膜に埋め込まれた骨誘導因 子とそのアンタゴニストであるノギンによって、細胞のアポ トーシスが制御されることを示しています<sup>18</sup>。これは、高分 子電解質の多層膜に埋め込まれた反応物を介して、歯の分化 時のアポトーシスをin situで制御できる可能性があることを 示す優れた実験です。De Smedtらは、炭酸カルシウム微小 粒子をテンプレートとしてデキストラン硫酸(D6924)の膜 とポリ-L-アルギニン(P7762)の膜で作製したLbL高分子電 解質マイクロカプセルの細胞取込み、分解、生体適合性につ いてin vivoで検討を行っています<sup>19</sup>。ほとんどのマイクロカ プセルは細胞内部に取り込まれ、皮下注射の16日後には分 解が始まったことから、分解性の高分子電解質で作製した LbLマイクロカプセルは薬物送達に適している可能性のある ことがわかります。

#### 今後の見通し

本稿では、生体材料を用いるLbL法のさまざまな特徴を簡単 に紹介しました。LbL法は、この温和さが最大の特徴であり、 繊細な生体材料に適しています。簡便性と汎用性が高いとい う他の特徴は温和な作製法を実行するうえで重要です。LbL 法は既存のトップダウン式の超微細加工法(マイクロファブ リケーション法、ナノファブリケーション法)と組み合わせ ることができます<sup>20</sup>。LbL積層法は簡便であるため、フォト リソグラフィー法、インクジェット法などの超微細加工技術 や他のパターニング技術に使用でき、さまざまな目的に適応 します。LbL法とトップダウン式加工法を融合させることに よって、超微細加工が施された構造に生体材料を組み込むこ とを可能にし、その結果バイオセンサーマイクロアレイ、マ イクロチップリアクターなどの次世代のバイオナノデバイス や超微細バイオデバイスをもたらすでしょう。

#### References

(1) Decher, G., Science, 1997, 277, 1232 (2) Ariga, K., Hill, J.P., Ji, Q., Phys. Chem. Chem. Phys., 2007, 9, 2319. (3) Quinn, J.F., Johnston, A.P.R., Such, G.K., Zelikin, A.N., Caruso, F., Chem. Soc. Rev., 2007, 36, 707. (4) Lvov. Y., Ariga, K. Ichinose, I., Kunitake, T., J. Chem. Soc., Chem. Commun., 1995, 2313. (5) Wang Y., Angelatos A.S., Caruso F., Chem. Mater., 2008, 20, 848. (6) Caruso, F., Trau, D., Möhwald, H., Renneberg, R. Langmuir, 2000, 16, 1485. (7) Lu, G., Ai, S., Li, J. Langmuir 2005, 21, 1679. (8) Onda, M., Lvov, Y., Ariga, K., Kunitake, T., J. Ferment. Bioeng. 1996, 82, 502. (9) Onda, M., Ariga, K., Kunitake, T., J. Biosci. Bioeng. 1999, 87, 69. (10) Rusling, J.F., Hvastkovs, E.G., Hull, D.O., Schenkman, J.B., Chem. Commun. 2008, 141. (11) Zhou, L., Yang, J., Estavillo, C., Stuart, J.D., Schenkman, J.B., Rusling, J.F., *J. Am. Chem. Soc.*, **2003**, *125*, 1431. (12) De Geest, B.G., Sanders, N.N., Sukhorukov, G.B., Demeester, J., De Smedt, S.C., Chem. Soc. Rev. 2007, 36, 636. (13) Shchukin, D.G., Patel, A.A., Sukhorukov, G.B., Lvov, Y.M., J. Am. Chem. Soc., 2004, 126, 3374. (14) Zhang, J., Chua, L.S. Lynn, D.M., Langmuir, 2004, 20, 8015. (15) Ji, Q., Miyahara, M., Hill, J.P., Acharya, S., Vinu, A., Yoon, S.B., Yu, J.-S., Sakamoto, K., Ariga, K., J. Am. Chem. Soc., 2008, 130, 2376. (16) Tang, Z., Wang, Y., Podsiadlo, P., Kotov, N.A., Adv. Mater. 2006, 18, 3203. (17) Jan, E., Kotov, N.A., Nano Lett. 2007, 7, 1123. (18) Nadiri, A., Kuchler-Bopp, S., Mjahed, H., Hu, B., Haikel, Y., Schaaf, P., Voegel, J.-C., Benkirane-Jessel, N., Small 2007, 3, 1577. (19) De Koker, S., B. Geest, B.G., Cuvelier, C., Ferdinande, C.L., Deckers, W., Hennink, W.E., De Smedt, S.C., Mertens, N., Adv. Funct. Mater. 2007, 17, 3754. (20) Hammond, P.T., Adv. Mater., 2004, 16, 1271.

### 高分子電解質

アニオン性(負の電荷をもつ)ポリマーとカチオン性(正の電荷をもつ)ポリマーは、一般に、高分子電解質と呼ばれており、 交互積層(LbL)法に利用される重要な材料です。以下の表はLbL研究に一般的に利用されている材料の一部を示したものです。 高分子電解質の全製品リストと最新製品については*sigma-aldrich.co.jp/aldrich/polymer*をご覧ください。

| Name                                                      | Structure                                         | Property                                                                    | Prod. No.                               |
|-----------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------------------|
| Anionic Polyelectrolytes                                  |                                                   |                                                                             |                                         |
| Poly(anetholesulfonic acid, sodium salt)                  | CH <sub>3</sub><br>O<br>S-ONa<br>OCH <sub>3</sub> | Avg. M <sub>v</sub> 9,000–11,000                                            | 444464-5G<br>444464-25G                 |
| Poly(sodium 4-styrenesulfonate) (PSS)                     | ∫<br>→ J <sub>n</sub><br>O=S=O<br>ONa             | Avg. M <sub>w</sub> ~ 70,000                                                | 243051-5G<br>243051-100G<br>243051-500G |
|                                                           |                                                   | Avg. M <sub>w</sub> ~ 1,000,000                                             | 434574-5G                               |
|                                                           |                                                   |                                                                             | 434574-100G                             |
|                                                           |                                                   |                                                                             | 434574-500G                             |
| Poly(sodium 4-styrenesulfonate) solution                  | $\left\{ \cdot \right\}$                          | Avg. $\rm M_{w} \sim$ 70,000, 30 wt.% in $\rm H_{2}O$                       | 527483-100ML                            |
| (155)                                                     |                                                   |                                                                             | 527483-1L                               |
|                                                           | O=S=O<br>ONa                                      | Avg. $M_w \thicksim 200,000,~30~wt.\%$ in $H_2O$                            | 561967-500G                             |
|                                                           |                                                   | Avg. $M_{\rm w} \sim$ 1,000,000, 25 wt.% in $\rm H_2O$                      | 527491-100ML                            |
| Poly(vinyl sulfate), potassium salt                       | ф<br>ко-5-0<br>0                                  | Avg. M <sub>w</sub> ~ 170,000                                               | 271969-1G<br>271969-5G                  |
| Poly(vinylphosphonic acid, sodium salt) solution          | f → J <sub>n</sub><br>O=S=O<br>ONa                | 25 wt.% in $H_2O$ , technical grade                                         | 278424-250ML<br>278424-1L               |
| Poly(acrylic acid, sodium salt) (PAA)                     | OONa                                              | Avg. M <sub>w</sub> ~ 2,100                                                 | 420344-100G<br>420344-500G              |
|                                                           | l I <sub>n</sub>                                  | Avg. M <sub>w</sub> ~ 5,100                                                 | 447013-100G                             |
|                                                           |                                                   |                                                                             | 447013-500G                             |
| Poly(acrylic acid, sodium salt), solution<br>(PAA)        | OONa                                              | Avg. M <sub>w</sub> ~ 1,200,<br>45 wt.% in H <sub>2</sub> O                 | 416010-100ML<br>416010-500ML            |
|                                                           | l J <sub>n</sub>                                  | Avg. M <sub>w</sub> ~ 8.000,<br>45 wt.% in H <sub>2</sub> O                 | 416029-100ML<br>416029-500ML            |
|                                                           |                                                   | Avg. M <sub>w</sub> ~ 15,000,<br>35 wt.% in H <sub>2</sub> O                | 416037-100ML<br>416037-500ML            |
| Cationic Polyelectrolytes                                 |                                                   |                                                                             |                                         |
| Poly(allylamine hydrochloride) (PAH)                      | ( +HCI<br>NH <sub>2</sub> ) <sub>n</sub>          | Avg. $M_w \sim 15,000$ (vs. PEG std.)                                       | 283215-5G<br>283215-25G                 |
|                                                           |                                                   | Avg. M <sub>w</sub> ~ 70,000 (vs. PEG std.)                                 | 283223-1G                               |
|                                                           |                                                   |                                                                             | 283223-5G                               |
|                                                           |                                                   |                                                                             | 283223-25G                              |
| Poly(diallyldimethylammonium chloride)<br>solution (PDDA) |                                                   | Avg. $M_{\rm w} <$ 100,000 very low molecular weight, 35 wt.% in $\rm H_2O$ | 522376-25ML<br>522376-1L                |

| Name                                                      | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Property                                           | Prod. No.    |
|-----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--------------|
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg. $M_w$ 100,000–200,000 low molecular           | 409014-25ML  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | weight, 20 wt.% in $H_2O$                          | 409014-1L    |
|                                                           | H <sub>3</sub> C <sup>°</sup> CH <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                    | 409014-4L    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg. M <sub>w</sub> 200,000–350,000 medium         | 409022-25ML  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | molecular weight,<br>20 wt.% in H <sub>2</sub> O   | 409022-1L    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | 409022-4L    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg. $M_w$ 400,000–500,000 high molecular          | 409030-25ML  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | weight, 20 wt.%<br>in H <sub>2</sub> O             | 409030-1L    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -                                                  | 409030-4L    |
| Polyethylenimine solution (PEI)                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg. M <sub>w</sub> ~ 1,300 (by LS),               | 482595-100ML |
|                                                           | $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $ | 50 wt.% in H <sub>2</sub> O                        | 482595-250ML |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg. M <sub>w</sub> ~ 2,000 (by LS),               | 408700-5ML   |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 wt.% in H <sub>2</sub> O                        | 408700-250ML |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | 408700-1L    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg. M <sub>w</sub> ~ 750,000 (by LS),             | 181978-5G    |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 50 wt.% in H <sub>2</sub> O                        | 181978-18KG  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | 181978-100G  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | 181978-250G  |
| Polyethylenimine, branched (PEI)                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg. $M_w \sim 25,000$ (by LS)                     | 408727-100ML |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | 408727-250ML |
|                                                           | H H I n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                    | 408727-1L    |
| Poly-L-Lysine hydrochloride                               | NHa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Avg. M <sub>w</sub> ~ 15,000–30,000                | P2658-25MG   |
|                                                           | • HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                    | P2658-100MG  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | P2658-500MG  |
|                                                           | NH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                    | P2658-1G     |
|                                                           | n                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Avg. M <sub>w</sub> > 30,000                       | P9404-25MG   |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | P9404-100MG  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | P9404-500MG  |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    | P9404-1MG    |
| Fluorescently Labeled Polyelectrolytes                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                    |              |
| Poly(fluorescein isothiocyanate allylamine hydrochloride) | NH2<br>• HCI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Avg. $M_w \sim 15,000$ , PAH:fluorescein 50:1      | 630217-250MG |
|                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Avg. M <sub>w</sub> ~ 70,000, PAH:fluorescein 50:1 | 630209-250MG |

#### 日本国内での価格と在庫状況をご覧になるには ....

- まず sigma-aldrich.com にアクセスして下さい。
   左上の「My Profile」をクリックして ① Web language = Japanese、② MSDS language = English、③ Country = Japan の3つを 選択し、Submit して下さい。
- 3) Top ページ等の右上にある Product Name or No. で検索して下さい。

# (生体) 材料科学における「クリック」ケミストリー







Dr. Joost A. Opsteen,<sup>1</sup> Dr. Lee Ayres<sup>2</sup> and Prof. Jan C.M. van Hest<sup>1</sup> <sup>1</sup>Organic Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, The Netherlands <sup>2</sup>Encapson B.V, The Netherlands j.vanhest@science.ru.nl

#### はじめに

生体分子と合成高分子を一体化することで、応用分野の広い 高い汎用性を持つ新しいタイプのバイオハイブリッド材料を 作製することが、近年大いに注目されています。その理由の ひとつとして、生体分子と合成高分子とを的確に結合させる 合成方法が開発されたことが挙げられます。銅(I) 触媒アジ ド-アルキン付加環化、すなわち「クリック」ケミストリー法 は、その効率性と特異性のほかに、天然高分子と合成高分子 を問わず必要な官能基を導入できる可能性を持つことから、 特に有用な方法です。本稿では、高分子工学分野の「クリッ ク」ケミストリーの応用と高分子バイオハイブリッドの合成 に関する概要をご紹介します。

#### 高分子バイオコンジュゲートの合成

DNAやタンパク質などの天然高分子は、現在の合成材料に比べて極めて優れた構造制御がなされています。構造が明確な 三次元組織は、高度に制御されたヌクレオチドやアミノ酸の 配列に由来しており、生体高分子に特異的な機能をもたらし ます。この三次元構造は生体高分子の機能を担っていること が多く、立体配座が変化することで機能が失われてしまいま す。一方、合成高分子はこのような完全なレベルでは制御さ れていませんが、比較的容易に特定の使用環境に適応させた 多様なトポロジーと組成を持つものを合成できます。

最近現れたロジカルな方法に、生体高分子の構造制御と合成 高分子の汎用性とを組み合わせたものがあり、プログラム化 された組み立て構造、認識、生理活性などの特性につながり ます。現在応用されているバイオハイブリッド高分子の合成 には概ね、従来の化学手法が利用されており、タンパク質の リジン残基のアミンやシステイン残基のチオールに対する反 応性に依存しています。バイオハイブリッドを使って既に優 れた結果が得られてはいますが、このふたつの残基、特にリ ジンは、タンパク質に広く存在するため、複数の合成高分子 ビルディングブロックが付加する原因になっています。この ため、構造が明確に制御されたバイオハイブリッド高分子を 合成するには、生体高分子に存在する他の官能基に対して不 活性で極めて特異性の高いカップリング法が必要です。 この点で、「クリック」ケミストリーは生体分子と合成高分 子とを結合させるうえで大変有用です。「クリック」ケミス トリーは Sharpless が創り出した用語で、モジュール方式で、 適用範囲が広く、きわめて高収率で、クロマトグラフィーな しで除去できる無害な副生成物のみを生成する一連の化学反 応を指します1。最も有名な「クリック」反応は、銅(I)触媒 アジド-アルキン付加環化反応 (CuAAC: copper(I)-catalyzed azide-alkyne cylcoaddition) であり、図1に示すような1,4-二 置換の五員環構造をもつ1,2,3-トリアゾール環2が得られま す。このアジドとアルキンとの反応は、収率が高く、ほかの 官能基によって反応経路が阻害されることはありません。ア ジド基とアルキン基はいずれも、既存の手法で生体分子と合 成高分子の特定の位置に導入することができます。これによ り「クリック」ケミストリーは高分子化学やバイオコンジュ ゲーションの分野に革命をもたらしました。その一部をこれ からご紹介します。



図1.「クリック」ケミストリーによる高分子の側基および末端基の官能基 化の模式図。

#### 高分子工学における「クリック」 ケミストリーの新たな役割

開環メタセシス重合 (ROMP: ring-opening metathesis polymerization)、ニトロキシド媒介ラジカル重合 (NMP: nitroxide mediated radical polymerization)、可逆的付加開裂 連鎖移動重合 (RAFT: reversible addition-fragmentation chain transfer polymerization)、原子移動ラジカル重合(ATRP: atom transfer radical polymerization) といった現在使用でき るリビング(制御可能な)重合技術によって重合プロセスの 厳密な制御が可能です。重合度をあらかじめ決めることがで き、多分散性を低くできます。さらに、側鎖と末端基の官能 性、組成(ブロック、グラフトおよびグラジエント共重合体 など)、トポロジー(くし型、星型、樹枝状構造など)につい て高分子の構造をデザインすることができます3。アジド部 分とアルキン部分は、制御された重合法を取り入れることに よって高分子鎖のさまざまな位置に容易に導入できるため、 このきわめて効率的な CuAAC 反応は高分子工学の強力な ツールとなっています4-8。

CuAAC反応を利用して、アルキン基を有するビルディング ブロックとアジド基を有するビルディングブロックからモ ジュール方式で、構造が明確なトポロジーをもつ多彩な高分 子が構築されており、高い収率が得られています。合成され た構造の一部を**図2**に示しましたが、その範囲はブロック共 重合体、グラフト共重合体、星型共重合体からハイドロゲル のような網目状高分子に至ります。たとえば、ATRPを応用

a D

sigma-aldrich.com/jap

するとアジド基とアルキン基を高分子鎖の末端に導入できる ことが明らかになっています<sup>9</sup>。

これはアルキン基を有する開始剤と、重合後にハロゲンをア ジドで置換することで実現されますが、ATRPで合成した高 分子では常にこのハロゲンが未端に存在することになります (p. 18のアプリケーションノート参照)。この方法によって、 銅(1) 触媒で定量的にカップリングさせることができる官能 基化された高分子ビルティングブロックが得られました。

同一の高分子ビルディングブロックの末端にはアジド基のほか、アセチレン基も導入できるため、この「クリック」カップリングの概念を展開してひとつの高分子の両末端基を連続的に官能基化する方法を実現しました<sup>10</sup>。高分子の一方の末端で選択的にCuAAC反応を行うため、もう一方の末端のアセチレン部分はトリイソプロピルシリル(TIPS)基で保護しました。この保護基はその後簡単に除去できるため、アセチレン基を次の「クリック」カップリングに利用できました。このモジュール方式のアプローチを使って、ポリ(アクリル酸メチル)-block-ポリスチレン-block-ポリ(アクリル酸tert-ブチル)のABC型トリブロック共重合体(図2の反応I参照)が合成されています<sup>12</sup>。なお、この方法では異なる重合メカニズムで合成された比較的結合しやすいブロックを用いることもできます。



図2.「クリック」ケミストリーによって作成された高分子の例: ブロック 共重合体<sup>9,10</sup>、鎖が伸張された高分子<sup>11</sup>,環状高分子<sup>12</sup>、グラフト共重合 体<sup>13</sup>、ハイドロゲル<sup>14</sup>および Miktoarm 星型ブロック共重合体<sup>15</sup>。

CuAAC反応は、さまざまな高分子構造の作成に加え、高分 子鎖や高分子ネットワークへの官能基の導入にも利用できま す<sup>4-6</sup>。アジド基やアルキン基を導入したモノマーを使えば、 嵩高いペンダント基を高分子鎖にグラフトすることができま すが(図2の反応II参照)、この手法は、あらかじめ官能基を 導入したモノマーの重合では問題となることがあります。一 般的には、制御された重合技術に「クリック」ケミストリー を組み合わせれば、高分子の側鎖や末端基にさまざまな官能 基を導入する点においてほぼ無限の可能性を秘めた強力な手 法といえるでしょう。

#### 「クリック」ケミストリーによる バイオハイブリッド高分子の合成

CuAAC 反応はきわめて効率的であり、高分子などの大きな 分子を高い収率で結合させることができるだけでなく、きわ めて特異的でもあります。これは、用いられるアジド基とア ルキン基がほかの官能基に対して不活性であり、銅(I) 触媒 存在下でのみ相互に反応することを意味します。この特異性 に加え、水溶液中、室温で反応を実行できることから、「ク リック」ケミストリーはペプチド、タンパク質、炭水化物、 DNAといった生体分子と合成高分子とを結合させるための 最適なツールです<sup>16,17</sup>。まず、最初の例として、図3に示す ような、末端にアジド基を有するポリスチレンを、アルキン 基を導入したウシ血清アルブミン (BSA) タンパク質と結合 させる反応があります<sup>18</sup>。ここでは、ATRPで調製したポリ スチレンの末端のハロゲン基を求核置換してアジド基を定量 的に導入しました。BSAの外側に位置するシステイン残基 (Cys-34)のチオール基に対してアルキンを有するマレイミ ドによるマイケル付加を行ったところ、1箇所のみがアルキ ン化されたタンパク質が得られました。続いて、硫酸銅と、 in situでCu(I) 触媒を生じさせる還元剤としてアスコルビン 酸を添加し、合成高分子とタンパク質との「クリック」反応 を行いました。興味深いことに、単離されたバイオハイブ リッド高分子が両親媒性のため、水溶液中でミセルが形成さ れていることが透過型電子顕微鏡で明らかになりました(図 3)。



図3. ポリスチレンとウシ血清アルブミン (BSA) タンパク質との [クリック] 反応の図<sup>18</sup>。得られた両親媒性のバイオハイブリッドが水溶液中でミ セルを形成していることが透過型電子顕微鏡画像でわかります。参考文 献(18) より許可を得て転載。Copyright 2005 The Royal Society of Chemistry.

CuAAC反応は、タンパク質のバイオコンジュゲーションに 加えて、マンノースやガラクトースなどの炭水化物を鎖状高 分子や樹枝状高分子と結合させる際にも利用されていま す<sup>19,20</sup>。このバイオハイブリッドは複数の結合部位を有して いるため、細胞間相互認識プロセスや細胞タンパク質間相互 作用プロセスにおける極めて特異的な経路を妨害する場合に 用いられます。またさらに、炭水化物はホルモン、抗体、毒 素の標的リガンドとなるため、この材料は医薬品やバイオセ ンサーにも適していると考えられます。このほか「クリック」 反応は、ウイルス、細菌、細胞などのさらに複雑な生物学的 実体に対しても適用されており、「クリック」ケミストリー が非常に有用であることがわかると思います。 における

生体分子機能のほか、バイオハイブリッド合成の再現性も維持するには、タンパク質工学技術を使って生体分子の目的位置に望みのアルキン基やアジド基を導入することが極めて重要です。そのアプローチのひとつが複数部位置換法(multisite replacement)と呼ばれるもので、タンパク質構成アミノ酸のひとつを生産できない栄養要求性の細菌株を利用します。 azidohomoalanineのような非天然アミノ酸を増殖倍地に添加すると、天然アミノ酸の代わりに組み込ませることができます<sup>21</sup>。この方法を利用して*Candida antarctica*由来Lipase B酵素(CalB)にアジド基を導入し、続いて、CuAAC反応によって末端にアルキンを有するポリ(エチレングリコール)を結合させました<sup>22</sup>。

#### 分子集合体への機能付与

バイオコンジュゲーション反応にクリックケミストリーを応 用すると、分子的に溶解した化学種に効果的に利用できるほ か、分子集合体の官能基化にも利用できます。たとえば、両 親媒性ブロック共重合体は溶媒中で自己組織化してベシクル 構造を形成することができます。ポリマーソーム

(polymersomes)とも呼ばれるこの高分子のベシクルは極めて 安定性の高い球状の殻構造で、さまざまな化合物の封入に利 用できます。このナノ容器を薬物送達担体やナノリアクター として用いるには、標的リガンドや酵素を結合する必要があ ると考えられます。このアプローチを模式化するため、ポリ スチレン-block-ポリ (アクリル酸) (PS-b-PAA) を調製し、末 端の臭素をアジド基に置換しました23。このブロック共重合 体のジオキサン溶液にゆっくり水を加えると、この両親媒性 ブロック共重合体は自己組織化してアジド基がベシクルの外 側に露出したポリマーソームを形成しました。水で徹底的に 透析を行って有機溶媒を除去したのち、高感度緑色蛍光タン パク質 (eGFP) などのアルキン基を導入したさまざまな基質 を、ベシクル外側のアジド基と結合させました(図4)。eGFP が結合したポリマーソームの蛍光挙動を共焦点レーザー顕微 鏡(confocal laser-scanning microscopy)で視覚化した様子を 図4に示します。銅触媒を添加しなかった対照実験では蛍光 が観察されなかったため、ベシクルにeGFPが共有結合して いるという結論が得られました。



図4. アジド基を導入したポリスチレン-block-ポリ (アクリル酸) からのポ リマーソーム形成と、「クリック」 ケミストリーによるポリマーソーム表 面への高感度緑色蛍光タンパク質の導入を示す模式図 (共焦点レーザー顕 微鏡で視覚化)<sup>23</sup>。参考文献 (23) から許可を得て転載。Copyright 2007 The Royal Society of Chemistry.

その後の研究で、「クリック」ケミストリーを利用して、ポ リスチレン-block-ポリ [L-イソシアノアラニン (2-チオフェ ン-3-イル-エチル)アミド] (PS-b-PIAT) から成る半多孔性の ポリマーソーム表面に CalB 酵素を結合しました<sup>24</sup>。この場 合、極性 PIAT ブロックに望みのアルキン基を導入できなかっ たため、末端にアルキン基を有するポリスチレン-block-ポ リ (エチレングリコール)ブロック共重合体をベシクル中に 共凝集させることで、その後の官能基化の足がかりとしまし た。この酵素の活性は、ポリマーソームへの結合後にも維持 されていました。

#### 生体材料科学への応用展望

バイオハイブリッド高分子は、薬物送達、ナノテクノロジー、 生物工学での応用に適した汎用性の高い材料であることが長 年にわたって認識されています。純粋な生体分子は、立体配 座が変換して機能を喪失しやすいため、バイオコンジュゲー ト研究が今後重要なテーマになり、新材料や改良型材料に応 用されると考えられます。この点で、「クリック」ケミスト リーは、ふたつの化合物をカップリングする、極めて効率的 かつ特異的で、生物学的にも適した優れた手法です。高分子 化学とタンパク質工学の互いの進歩とともに、科学者は、今 や明確な構造と特性をもつハイブリッド高分子を調製するた めの包括的なツールを手にしているのです。

#### References

(1) Kolb, H.C.; Finn, M.G.; Sharpless, K.B. Angew. Chem., Int. Ed. 2001, 40, 2004. (2) Rostovtsev, V.V.; Green, L.G.; Fokin, V.V.; Sharpless, K.B. Angew. Chem., Int. Ed. 2002, 41, 2596. (3) Matyjaszewski, K. Prog. Polym. Sci. 2005, 30, 858. (4) Lutz, J.-F. Angew. Chem.. Int. Ed. 2007. 46. 1018. (5) Binder, W.H.; Sachsenhofer, R. Macromol. Rapid Commun. 2007, 28, 15. (6) Golas, P.L.; Matyjaszewski, K. QSAR Comb. Sci. 2007, 1116. (7) Fournier, D.; Hoogenboom, R.; Schubert, U.S. Chem. Soc. Rev. 2007, 36, 1369. (8) Nandivada, H.; Jiang, X.; Lahann, J. Adv. Mater. 2007, 19, 2197 (9) Opsteen, J.A.; van Hest, J.C.M. Chem. Commun. 2005, 57 (10) Opsteen, J.A.; van Hest, J.C.M. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2913. (11) Tsarevsky, N.V.; Sumerlin, B.S.; Matyjaszewski, K. Macromolecules 2005, 38, 3558. (12) Laurent, B.A.; Grayson, S.M. J. Am. Chem. Soc. 2006, 128, 4238. (13) Parrish, B.; Breitenkamp, R.B.; Emrick, T. J. Am. Chem. Soc. 2005, 127, 7404. (14) Malkoch, M.; Vestberg, R.; Gupta, N.; Mespouille, L.; Dubois, P.; Mason, A.F.; Hedrick, J.L.; Liao, Q.; Frank, C.W.; Kingsbury, K.; Hawker, C.J. Chem. Commun. 2006. 2774. (15) Altintas, O.; Hizal, G.; Tunca, U. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 1218. (16) Dirks, A.J.; Cornelissen, J.J.L.M.; van Delft, F.L.; van Hest, J.C.M.; Nolte, R.J.M.; Rowan, A.E.; Rutjes, F.P.J.T. QSAR Comb. Sci. 2007, 26, 1200. (17) Lutz, J.-F.; Börner, H.G. Prog. Polym. Sci. 2008, 33, 1. (18) Dirks, A.J.; van Berkel, S.S.; Hatzakis, N.S.; Opsteen, J.A.; van Delft, F.L.; Cornelissen, J.J.L.M.; Rowan, A.E.; van Hest, J.C.M.; Rutjes, F.P.J.T.; Nolte, R.J.M. Chem. Commun. 2005, 4172, (19) Ladmiral, V.; Mantovani, G.: Clarkson, G.J.: Cauet, S.: Irwin, J.L.: Haddleton, D.M. J. Am. Chem. Soc. 2006, 128, 4823. (20) Wu, P.; Malkoch, M.; Hunt, J.N.; Vestberg, R.; Kaltgrad, E.; Finn, M.G.; Fokin, V.V.; Sharpless, K.B.; Hawker, C.J. Chem. Commun. 2005, 5775. (21) Link, A.J.; Tirrell, D.A. J. Am. Chem. Soc. 2003, 125, 11164. (22) Schoffelen, S.; Lambermon, M.H.L.; van Eldijk, M.B.; van Hest, J.C.M. Bioconjugate Chem. 2008, DOI: 10.1021/bc800019v (23) Opsteen, J.A.; Brinkhuis, R.P.; Teeuwen, R.L.M.; Löwik, D.W.P.M.; van Hest, J.C.M. Chem. Commun. 2007, 3136. (24) van Dongen, S.F.M.; Nallani, M.; Schoffelen, S.; Cornelissen, J.J.L.M.; Nolte, R.J.M.; van Hest, J.C.M. Macromol, Rapid Commun, 2008, 29, 321.

ALDRICH

### 「クリック」ケミストリーによる生体材料作成に用いられる関連製品

| Name                                                                   | Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Molecular Weight (Avg. M <sub>n</sub> )     | Prod. No.    |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|--------------|
| Azide-Functionalized                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |              |
| Methoxypolyethylene glycol azide                                       | No OCH-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2000, $M_w/M_n < 1.2$                       | 689807-250MG |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | 689807-1G    |
|                                                                        | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,000, M <sub>w</sub> /M <sub>n</sub> < 1.2 | 689475-250MG |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | 689475-1G    |
| Polyoxyethylene bis(azide)                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2000, $M_w/M_n < 1.2$                       | 689696-250MG |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | 689696-1G    |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5,000, $M_w/M_n < 1.2$                      | 689580-250MG |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             | 689580-1G    |
| O-(2-Aminoethyl)-O'-(2-azidoethyl)<br>pentaethylene glycol             | $H_2N \frown O \frown_6N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 350                                         | 76172-500MG  |
| O-(2-Aminoethyl)-O'-(2-azidoethyl)<br>heptaethylene glycol             | $H_2N$ $H_2N$ $H_3N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 440                                         | 76318-500MG  |
| O-(2-Aminoethyl)-O'-(2-azidoethyl)<br>nonaethylene glycol              | $H_2N$ $(0, 1)$ $N_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 530                                         | 77787-500MG  |
| O-(2-Azidoethyl)-O-[2-(diglycolyl-amino)<br>ethyl]heptaethylene glycol |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 550                                         | 71613-500MG  |
| O-(2-Azidoethyl)-heptaethylene glycol                                  | N <sub>3</sub> V <sub>3</sub> N <sub>3</sub> N <sub>3</sub> N <sub>3</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                             | 689440-250MG |
| Polystyrene, azide terminated                                          | $H_3C$ $O$ $H_3C$ $H_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2,000, M <sub>w</sub> /M <sub>n</sub> < 1.3 | 699772-500MG |
| Poly(methyl acrylate), azide terminated                                | $H_{3C} \cap O $<br>$H_{3C} \cap CH_{3} $<br>$O \cap OCH_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,000, M <sub>w</sub> /M <sub>n</sub> < 1.3 | 699764-500MG |
| Acetylene-Functionalized                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |              |
| Poly(ehtylene glycol) methyl ether, acetylene terminated               | H <sup>3</sup> CO (o ) 0 = CH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2,000                                       | 699802-500MG |
| Poly(ethylene glycol), bis-acetylene<br>terminated                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2,000                                       | 699810-500MG |
| Polyester-8-hydroxyl-1-acetylene bis-MPA<br>dendron                    | $((HO)_2R)_4(R)_2R \xrightarrow{O}_{CH_3} O^-C \equiv CH  R = \underbrace{*}_{CH_3} O^- C \equiv CH_3$ (generation 4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 869, generation 3                           | 686646-250MG |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1,798, generation 4                         | 686638-250MG |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3,656, generation 5                         | 686611-250MG |
| Polymersome-Forming Polymers                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                             |              |
| Poly(styrene)- <i>block-</i> (poly(ehtylene glycol)                    | $H_{3}CO$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 800–1,200 (PEG)<br>20,700–25,300 (PS)       | 686476-500MG |
| Poly(styrene)- <i>block</i> -poly(acrylic acid)                        | $H_3C \cap H_3C \cap $ | 1,890–2,310 (PAA)<br>5,580–6,820 (PS)       | 686794-500MG |

バルク供給/スケールアップのご相談は… ファインケミカル事業部 Tel:03-5796-7340 Fax:03-5796-7345 E-mail:safcjp@sial.com



# 高分子末端へのアジド基と アルキン基の導入

Dr. Joost A. Opsteen

Institute for Molecules and Materials Radbound University Nijmegen, The Netherlands

「クリック」ケミストリー、特に銅(I) 触媒によるアジド-アル キン付加環化(CuAAC)は、高分子化学と材料科学における 強力な合成ツールです。(生体)高分子構造工学において CuAACが成功した理由としては、高分子ビルディングブロッ クの所定の位置に望みのアジド基やアルキン基を導入できる ようになったことのほか、制御的重合技術が発展したことが 挙げられます。

制御的重合によって構造が明確な末端基をもつ高分子を合成 し、続いて、この末端基をアジドやアルキンに変換すること ができます。ポリ(エチレングリコール)(PEG)(295906)の末 端の水酸基をアジドまたはアルキンに変換する例をスキーム 1に示します。このPEGをピリジン(676772)と塩化トシル (TsCl)(240877)で処理すると、置換が容易なトシ ル基活性化PEGが得られます。その後アジ化ナトリ ウム(NaN<sub>3</sub>)(438456)と反応させるとアジド基を導 入することができ、末端にアジドを有する高分子が 得られます。PEGへのアルキンの導入は、1-エチル -3-(3-ジメチルアミノプロピル)カルボジイミド塩 Meo 酸塩(EDCl)(E7750)と4-ジメチルアミノピリジン (DMAP)(522805)の存在下でペンチン酸(232211) でエステル化させて行います(スキーム1)<sup>1</sup>。

原子移動ラジカル重合(ATRP)プロセスでは、通常、 末端にハロゲンを有する高分子が得られます。ハロ ゲンは求核置換反応を受けやすいという傾向がある ため、この方法を利用してさらに別の官能基を導入 することができます<sup>2</sup>。たとえば(スキーム2)、 ATRPののち、末端に臭素を有するポリスチレン(PS) をアジドトリメチルシラン(Me<sub>3</sub>SiN<sub>3</sub>)(155071)と テトラブチルアンモニウムフルオリド(TBAF) (216143)で処理すると、アジド基の置換を定量的 に行えます<sup>1,3</sup>。

重合後の末端基修飾をうまくできるかどうかは、重 合時の停止反応をうまく抑制できるかに左右されま す。さらに、目的の官能基の導入が不完全にならな いように、末端基を定量的に操作する必要がありま す。重合時に副反応が起こらないのであれば、官能 基を有する開始剤が、定量的に官能基を導入するう えで有用となる可能性があります。 官能基を有する開始剤を使ってアルキン基を導入した例をス キーム3に示します。アルキンを有するα-ブロモエステル開 始剤をTIPS保護基で保護して、ATRP時に銅触媒と錯体形成さ せないようにします。アジドは「クリック」反応に利用でき、 TIPS基は重合後に取り除くことができるため、次の「クリッ ク」反応に利用することができます<sup>4</sup>。

#### References

 Opsteen, J.A.; van Hest, J.C.M. Chem. Commun. 2005, 57. (2) Coessens, V.; Pintauer, T.; Matyjaszewski, K. Prog. Polym. Sci. 2001, 26, 337. (3) Matyjaszewski, K.; Nakagawa, Y.; Gaynor, S.G. Macromol. Rapid Commun. 1997, 18, 1057.
 Opsteen, J.A.; van Hest, J.C.M. J. Polym. Sci., Part A: Polym. Chem. 2007, 45, 2913.



スキーム1. ポリ(エチレングリコール)の末端の水酸基を、アジド基またはアルキン基に変換!。



スキーム2. ATRPによって調製した臭素末端基をもつポリスチレンは、容易にアジドと変換できます<sup>13</sup>。



**スキーム3.** 両末端に保護されたアルキンとアジドを有するヘテロテレケリック(Hetero-telechelic) ポリ(アクリル酸 *tert*-ブチル)の合成<sup>4</sup>。

## 自己組織化単分子層と SAMDI-ToF 質量分析法による 表面化学



Prof. Milan Mrksich

Department of Chemistry The University of Chicago Chicago, IL mmrksich@uchicago.edu

現代の合成化学は、複雑な分子構造の合成を可能にし、医薬 品、触媒、機能性高分子の開発には欠かせないものとなりま した。化学者はもはや、目的の構造が合成できるかどうかで はなく、いかに効率的に合成できるかを求めています。しか し同様の反応を表面合成に用いる場合にはかなり異なる手法 が求められます。明確な構造とさまざまな官能基を有する表 面を簡単に作成することができますが、界面反応の生成物の 評価が難しいため、最も単純な置換を実行することさえ困難 です。皮肉なことに、界面反応では後処理に反応混合物で表 面を洗浄するだけなので、均一相での反応よりもはるかに簡 単に実施できます。しかし、生成物、収率、反応速度の評価 にかなりの困難が伴います。溶液中で行う反応の場合、生成 物は容易に単離・精製でき、NMR、IRや、他の分光法で確認 できますが、同様の反応を2次元の界面で実行すると生成量 が少ないために、上記の分析方法を用いることができませ ん。その代わりに、得られる構造情報に制限がありますが感 度の高い種々の方法を利用する必要があります1。

本稿では、界面反応によって得られる生成物を迅速に評価で きる自己組織化単分子層 (self-assembled monolayers) とマト リックス支援レーザー脱離イオン化質量分析法 (matrixassisted laser desorption-ionization mass spectrometry) とを組 み合わせた [SAMDI MS] と呼ばれる手法について説明しま す2。自己組織化単分子層は、末端が置換されたアルカンチ オールの溶液中に金で被覆した基板を通常の実験室の環境で 浸漬することによって容易に作成でき、合成的に柔軟である ことから、表面化学にとって魅力的な方法です。この柔軟性 の理由としては、さまざまな末端官能基をもつアルカンチ オールを用いる成膜プロセスに使用できること、チオールの 金への化学吸着がきわめて特異的であること、単分子層が熱 的に安定でありさまざまな溶媒や反応物と使用できることが 挙げられます3。アルカンチオールがメーカーから購入しや すくなり (本号の22ページの表参照)、大がかりな器具や設 備を必要としないため、この方法は合成化学者にとって身近 なものとなりつつあります。SAMDI MS技術の発展によって、 最終的には自己組織化単分子層上での分子反応を評価する迅

速かつ一般的な方法が確立され、分子表面化学の基礎・応用 研究の大きな発展が促されることになると期待されていま す。

レーザー脱離質量分析法を使って自己組織化単分子層を評価 した最初の例は Hemminger、Fritsch と Wilkins、 Hanleyの研 究室によるものでした46。FritschとWilkinsは、たとえば、 308 nmのレーザーを使って単分子層を脱着させ、アルカン チオラートの酸化で生じるアルカンスルホナートを観察する ことに成功しました。当時は、市販のレーザー脱離質量分析 装置が少なく、単分子層上の界面反応の例も少なかったた め、この方法はあまり普及しませんでした。数年後、われわ れは、界面反応を評価する難しさに直面した際に、幅広い種 類の官能基を導入した自己組織化単分子層に対して市販のマ トリックス支援レーザー脱離イオン化質量分析装置を適用で きることを見出しました<sup>7</sup>。通常の実験では、SAMDI MS に 用いる一般的なマトリックス分子の溶液を単分子層に塗布し て乾燥させます。単分子層に窒素レーザーを照射すると、ア ルカンチオール (または類似のジスルフィド) が金基板から 効率的に遊離して、この分子の質量が分かります(図1)。最 初の例では、この方法を利用して、単分子層に結合したマレ イミド基へのペンタメチルシクロペンタジエンの付加環化、 アミドの形成、tert-ブチルエステルの脱保護を評価しました。 いずれの場合も、SAMDIスペクトルは、反応前と反応後の置 換されたアルカンチオールまたはそのジスルフィドに帰属さ れるピークを示しました。SAMDIは、アルカンチオール中に 存在する官能基の特性ではなく、アルカンチオールの全質量 に関する情報を提供するという点において、他の分光法では 得られない情報が得られます。またSAMDIは、サンプルの 分析にかかる時間が10分未満と、スペクトルを迅速に入手 できるため、反応収率の評価や予想される生成物の存在の確 認に有用です。



図1. SAMDI MSと呼ばれる手法でマトリックス支援レーザー脱離イオン 化質量分析を利用すると自己組織化単分子層を評価することができます。 窒素レーザーを利用して単分子層を脱離させるとアルカンチオラートと そのジスルフィド分子が生じます。質量分析計からは、この分子の質量 電荷比が得られ、生成物、収率、界面反応の速度に関する情報が入手で きます。 最初の例では、末端にアルキン基を有する単分子層の反応を 扱います。塩基促進による末端の水素原子を重水素原子に交 換する反応は単純ですが、単分子層で行う場合は評価が極め て困難です。末端がアルキン基の単分子層と末端がメチル基 の単分子層との混合物から成る単分子層のSAMDIスペクト ルは、混合した対称的なジスルフィドに対応するピークを示 しました。この単分子層を水酸化ナトリウムで処理したのち 重水で処理すると、末端の水素原子を交換することができま した。これは、ジスルフィドの質量がそれぞれ1ドルトンと 2ドルトン増加したことにより確認できます(図2)。この例 から、質量分析法を界面反応の評価に簡単に応用できること と、この方法が優れた質量分解能を持つことが分かります。 また、この方法を用いて、アルキンを水和するとメチルケト ンが生じ、薗頭カップリングを行うとフェニルアセチレンが 生じることも実証できました。



図2. SAMDI MSを使って、未端アルキンの水素が重水素に交換されたかを確認しました。反応前のマススペクトルは m/z 779.6 でピークを示し、反応後は 780.6 にシフトしています。ジスルフィドのピークでは、予想されたとおり、質量が 2 ドルトン増加していることが分かります。

2番目の例は、自己組織化単分子層の構造を構築するための 多段階合成反応の開発です。単分子層は「バイオチップ」用 途によく用いられます。ペプチド、炭水化物または低分子が 並ぶバイオチップの表面は、酵素の基質やタンパク質のリガ ンドを特定するために利用されます<sup>14</sup>。この用途では、多く の場合、単分子層に結合させる分子を既存の方法で最初に合 成したのちに、適切な結合反応を使ってこれを単分子層に固 定化します。オリゴ糖など特定の分子の場合は、調製に必要 な時間と費用のために、作製できるアレイのサイズが限定さ れます。 ペプチドアレイやオリゴヌクレオチドアレイに関する初期の 研究では、基板上に直接分子を合成することによって、数百 から数千もの一連の生体分子を迅速かつ効率的に表面に作製 する方法が利用されました<sup>15</sup>。この例では、アレイ合成に用 いる一連の界面反応の開発と最適化を行うのにかなりの取り 組みがなされ、なかでも最も大きな課題はその界面反応の生 成物と収率を評価することでした。最近われわれはSAMDI を利用し、単分子層で直接多段階合成を行ってオリゴ糖アレ イを調製する方法を開発しました<sup>16</sup>。

オリゴ糖アレイの合成に用いた方法を図3に示します。これ は末端にトリ(エチレングリコール)を持つアルカンチオラー トのバックグラウンドに対して5%の密度でフェノール基が 存在する単分子層から出発します。前者は炭水化物ビルディ ングブロックを結合するための求核剤になります。後者は非 特異的なタンパク質の吸着を効果的に防ぐため、そしてその 後の固定化したオリゴ糖の生化学的アッセイに重要です17。 その後の工程で選択的に脱保護できるように4番目の水酸基 がレブリン酸エステルとして保護されているトリアセチル化 された単糖類をトリクロロアセトイミド酸エステルに変換し たのちに、トリフルオロメタンスルホン酸トリメチルシリル で活性化してフェノール基とカップリングさせました。この 単分子層をヒドラジンで処理してレブリン酸エステル基を除 去したのちに、もうひとつの単糖類で処理することで完全に 保護された二糖類を得ました。ナトリウムメトキシドで処理 するとアセチル基が除去され、固定化された二糖類が得られ ました。SAMDIスペクトルから、各段階が高収率で進行し て予想された生成物が得られていることがわかりました(図 3)。この一連の処理を24種類の異なる二糖類アレイの調製 に適用しました。この作成は6時間未満で完了し、その後グ リコシルトランスフェラーゼの基質特異性の解析に利用しま した。このように、質量分析法は酵素反応の生成物を直接同 定するうえで有用であると言えます。



図3. 基板の単分子層上に二糖類を合成する各段階後における表面の SAMDI MSスペクトル。(a) フェノール基を有する単分子層:(b) 最初の 単糖類のカップリング:(c) 保護基のレブリン酸エステルの選択的除去: (d) 二番目の単糖類のカップリング:(e) 最後の脱保護。

ALDRICH

3番目の例では、DNAオリゴヌクレオチドの反応を扱います。 現在、幾万もの異なる配列を含むDNAアレイが培養細胞の 遺伝子発現パターンの解析に一般的に用いられており、最近 ではタンパク質とDNAとの結合相互作用を特定するために 用いられています18。このアレイは結合相互作用を検出する ために蛍光標識が使用されているため、反応性の低分子化合 物でDNAを処理して得られる共有結合付加物などの化学反 応性を調べる研究には適用できません。SAMDIを利用して固 定化したDNAの反応を評価するには、まず、トリ(エチレン グリコール) 基のバッググラウンドに対して5%の密度でマ レイミド基が存在する単分子層を用意します<sup>19</sup>。DNAを結合 させるため、末端にビオチンを有するアルカンチオールを最 初に固定化したのちに、タンパク質のストレプトアビジンを 結合させた表面を作製、ビオチン標識二本鎖オリゴヌクレオ チドを捕捉しました。この一連の二本鎖を抗癌剤であるシス プラチンで処理し、その反応によって形成される一付加物や 二付加物をSAMDIによって同定しました(図4)。SAMDI法 の柔軟性とDNAアレイの確立された方法によって、アレイ を用いる応用分野が大きく広がる可能性があります。



**図4.** ビオチン化された二本鎖 DNA(5'-ビオチン-TTT TAT ATA CGT ATA TCG) とシスプラチン (*cis*-[Pt(NH<sub>2</sub>)<sub>2</sub>Cl<sub>2</sub>]) との反応生成物の SAMDI MSス ペクトル。反応時間:0時間(A)、4時間(B)、21時間(C)。

以上の例から、自己組織化単分子層の界面反応の生成物と収 率を迅速に評価できる SAMDIの有用性がおわかりいただけ たと思います。合成量の多い分子ならNMR法やX線回折法 で分析できますが、表面に結合した分子の構造に関する総合 的な情報を提供できる方法やその組み合わせは未だにありま せん。現在、表面化学の研究では界面構造を把握するために (多くの場合は不完全ですが)、官能基を同定する赤外分光 法、元素組成を決定するX線光電子分光法、単分子層の膜厚 を測定する偏光解析法 (ellipsometry) などのいくつかの方法 を組み合わせて利用しています。SAMDIは、アルカンチオー ルを用いることでこれらの方法を補足し、他の方法では得ら れない分子の情報をもたらします。重要な点は、この方法が 簡単に使用できること、単分子層上での様々な化学反応の開 発・実行に利用できる情報が得られることです。この利点に より、将来、様々な分野の基礎・応用研究に利用可能な複雑 な構造を有する表面を開発できることでしょう。

#### References

(1) Chechik, V., Crooks, R.M., Stirling, C.J.M., Adv. Mater., 2000, 12, 1161. (2) Mrksich, M., ACS Nano, 2008, 2, 7. (3) Love, J.C., Estroff, L.A., Kriebel, J.K., Nuzzo, R.G., Whitesides, G.M., Chem. Rev., 2005, 105, 1103. (4) Li, Y., Huang, J., McIver, R.T., Hemminger, J.C., J. Am. Chem. Soc., 1992, 114, 2428. (5) Scott, J.R., Baker, L.S., Everett, W.R., Wilkins, C.L., Fritsch, I., Anal. Chem., 1997, 69, 2636. (6) Trevoer, J.L., Lykke, K.R., Pellin, M.J., Hanley, L., Langmuir, 1998, 14, 1664. (7) Su, J., Mrksich, M., Langmuir, 2003, 19, 4867. (8) Yeo, W.-S., Mrksich, M., Adv. Mat., 2004, 16, 1352. (9) Li, J., Thiara, P.S., Mrksich, M., Langmuir, 2007, 23, 11826. (10) Min, D.-H., Su, J., Mrksich, M. Angew. Chem. Int. Ed., 2004, 43, 5973 (11) Min, D.-H., Tang, W.-J., Mrksich, M., Nature Biotechnology, 2004, 22, 717. (12) Patrie, S.M., Mrksich, M., Anal. Chem., 2007, 79, 5878. (13) Gurard-Levin, Z., Mrksich, M., *Biochemistry*, **2008**, *47*, 6242 (14) Gurard-Levin, Z., Mrksich, M., Annu. Rev. Anal. Chem., 2008, in press. (15) Fodor, S.P., Read, J.L., Pirrung, M.C., Stryer, L., Lu, A.T., Solas, D. Science, **1991**, *251*, 767. (16) Ban, L., Mrksich, M., Angew. Chem., **2008**, 47, 3396. (17) Mrksich, M., Whitesides, G.M., *Am. Chem. Soc. Sym. Ser.* on Chemistry and Biological Applications of Polyethylene Glycol, 1997, 680, 361. (18) Robert, F., Wyrick, J.J., Aparicio, O., Jennings, E.G., Simon, I., Zeitlinger, J., Schreiber, J., Hannett, N., Kanin, E., Volkert, T.L., Wilson, C.J., Bell, S.P., Young, R.A., Science 2000, 290, 2306. (19) Tsubery, H., Mrksich, M., Langmuir, 2008, 24, 5433.

分子層と表面

### 金表面用の分子自己組織化材料

金表面での機能性自己組織化単分子層 (SAMs) の作製に用いられるチオール化合物をご紹介します。自己組織化材料の全製品 リストについては *sigma-aldrich.co.jp/aldrich/micronano* をご覧ください。

| Chain<br>Length | Name                                      | Puritv           | Structure                                                                                | Prod. No.    |
|-----------------|-------------------------------------------|------------------|------------------------------------------------------------------------------------------|--------------|
| 10              | 1-Decanethiol                             | 96%              | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> SH                       | D1602-50ML   |
|                 |                                           |                  |                                                                                          |              |
|                 | 11-Mercaptoundecanoic acid                | 99%              | 0<br>Н0 <sup>Ц</sup> CH <sub>2</sub> (CH <sub>2)8</sub> CH <sub>2</sub> SH               | 674427-500MG |
|                 | 11-Mercaptoundecanoic acid                | 95%              | 0                                                                                        | 450561-5G    |
|                 |                                           |                  | HO <sup>rth</sup> CH <sub>2</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> SH     | 450561-25G   |
|                 | NanoThinks <sup>™</sup> ACID11            | Ethanol solution | HO CH <sub>2</sub> (CH <sub>2</sub> ) <sub>8</sub> CH <sub>2</sub> SH                    | 662925-100ML |
|                 | 1H,1H,2H,2H-Perfluorodecanethiol          | 97%              | CF <sub>3</sub> (CF <sub>2</sub> ) <sub>7</sub> CH <sub>2</sub> CH <sub>2</sub> SH       | 660493-5G    |
|                 |                                           |                  |                                                                                          | 660493-25G   |
| 11              | 11-Amino-1-undecanethiol<br>hydrochloride | 99%              | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>9</sub> CH <sub>2</sub> NH <sub>2</sub> • HCl  | 674397-50MG  |
|                 | 11-Mercapto-1-undecanol                   | 99%              | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>9</sub> CH <sub>2</sub> OH                     | 674249-250MG |
|                 | 11-Mercapto-1-undecanol                   | 97%              | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>9</sub> CH <sub>2</sub> OH                     | 447528-1G    |
|                 |                                           |                  |                                                                                          | 447528-5G    |
|                 | 11-Mercaptoundecyl<br>trifluoroacetate    | 99%              | O<br>F₃C <sup>⊥⊥</sup> OCH₂(CH₂)₀CH₂SH                                                   | 674230-50MG  |
|                 | NanoThinks™ ALCO11                        | Ethanol solution | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>9</sub> CH <sub>2</sub> OH                     | 662224-100ML |
|                 | 1-Undecanethiol                           | 98%              | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>9</sub> CH <sub>2</sub> SH                       | 510467-5G    |
| 12              | 1-Dodecanethiol                           | ≥98%             | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>10</sub> CH <sub>2</sub> SH                      | 471364-100ML |
|                 |                                           |                  |                                                                                          | 471364-500ML |
|                 |                                           |                  |                                                                                          | 471364-2L    |
|                 |                                           |                  |                                                                                          | 471364-18L   |
|                 | tert-Dodecylmercaptan                     | 98.50%           |                                                                                          | 471585-100ML |
|                 |                                           |                  | Clau CH3                                                                                 | 471585-2L    |
|                 | 12-Mercaptododecanoic acid                | 96%              | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>9</sub> CH <sub>2</sub> OH                     | 675067-1G    |
|                 | 4-(6-Mercaptohexyloxy)benzyl<br>alcohol   | 97%              | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>4</sub> CH <sub>2</sub> O                      | 673560-50MG  |
| 14              | 15-Mercaptopentadecanoic acid             | 97%              | <u>0</u>                                                                                 | 675091-5G    |
|                 |                                           |                  | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>12</sub> CH <sub>2</sub> OH                    |              |
|                 | 1-Tetradecanethiol purum                  | ≥98.0%           | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>12</sub> CH <sub>2</sub> SH                      | 87193-5ML    |
|                 |                                           |                  |                                                                                          | 87193-25ML   |
| 15              | 16-Mercaptohexadecanoic acid              | 99%              | О<br>НО <sup></sup> СН <sub>2</sub> (СН <sub>2)13</sub> СН <sub>2</sub> SH               | 674435-250MG |
|                 | 16-Mercaptohexadecanoic acid              | 90%              | 0<br>                                                                                    | 448303-1G    |
|                 |                                           |                  | HO <sup></sup> CH <sub>2</sub> (CH <sub>2</sub> ) <sub>13</sub> CH <sub>2</sub> SH       | 448303-5G    |
|                 | NanoThinks™ ACID16                        | Ethanol solution | 0<br>НО <sup>Ц</sup> СН <sub>2</sub> (СН <sub>2</sub> ) <sub>13</sub> СН <sub>2</sub> SH | 662216-100ML |
|                 | 1-Pentadecanethiol                        | 98%              | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>13</sub> CH <sub>2</sub> SH                      | 516295-1G    |
| 16              | 1-Hexadecanethiol                         | 99%              | HS-CH <sub>2</sub> (CH <sub>2</sub> ) <sub>14</sub> CH <sub>3</sub>                      | 674516-500MG |
| 18              | NanoThinks <sup>™</sup> 18                | Ethanol solution | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>16</sub> CH <sub>2</sub> SH                      | 662194-100ML |
|                 | 1-Octadecanethiol                         | 98%              | CH <sub>3</sub> (CH <sub>2</sub> ) <sub>16</sub> CH <sub>2</sub> SH                      | 01858-25ML   |
|                 |                                           |                  |                                                                                          | 01858-100ML  |

| Chain<br>Length | Name                                                          | Purity | Structure                                                           | Prod. No.    |
|-----------------|---------------------------------------------------------------|--------|---------------------------------------------------------------------|--------------|
| 20              | Triethylene glycol mono-11-<br>mercaptoundecyl ether          | 95%    | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>9</sub> CH <sub>2</sub> O | 673110-250MG |
| 23              | [1-(Methylcarbonylthio)undec-11-yl]<br>tetra(ethylene glycol) | 95%    | н <sub>а</sub> с с                                                  | 674176-250MG |
| 24              | (1-Mercaptoundec-11-yl)<br>tetra(ethylene glycol)             | 95%    | HSCH <sub>2</sub> (CH <sub>2</sub> ) <sub>9</sub> CH <sub>2</sub> O | 674508-250MG |
| 29              | (1-Mercaptoundec-11-yl)<br>hexa(ethylene glycol)              | 96%    | СЧ-200-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-                           | 675105-250MG |

#### 日本国内での価格と在庫状況をご覧になるには ....

- 1) まず sigma-aldrich.com にアクセスして下さい。
- 2) 左上の「My Profile」をクリックして ① Web language = Japanese、② MSDS language = English、③ Country = Japan の3つを 選択し、Submit して下さい。
- 3) Top ページ等の右上にある Product Name or No. で検索して下さい。



バルク供給/スケールアップのご相談は… ファインケミカル事業部 Tel:03-5796-7340 Fax:03-5796-7345 E-mail:safcjp@sial.com

### リン酸カルシウムセラミックスを基盤とする骨組織再生工学



Prof. Daniel Huster<sup>1</sup> and Dr. Mathias Pretzsch<sup>2</sup>

<sup>1</sup>Institute of Medical Physics and Biophysics and <sup>2</sup>Department of Orthopedics, University of Leipzig, Leipzig, Germany husd@medizin.uni-leipzig.de

骨は、弾性と安定性という優れた性質を併せ持つ複合材料です。この組織は、細胞外の無機物(約50~60 wt.%)と有機物(約30~40 wt.%)、水(約10 wt.%)、種々の細胞型で構成されています。この細胞外マトリックス(ECM:

extracellular matrix)は骨芽細胞と呼ばれる細胞から産生され、 その大部分がバイオアパタイトとコラーゲンで構成されてい ます。骨塩は、約4~8%のCO<sub>3</sub><sup>2-</sup>を含むヒドロキシアパタイ ト(HA, Ca<sub>10</sub>(PO<sub>4</sub>)<sub>6</sub>(OH)<sub>2</sub>)とほかの微量元素で構成される炭 酸アパタイトです。骨組織の最も多い成分はI型コラーゲン です。血小板様のバイオアパタイト結晶がコラーゲン繊維に 沿って配列をなしています。ほかの組織のコラーゲンではこ の部分に水が存在します(**図1**)。



図1. ミネラルを含むコラーゲン繊維の模式図。三重らせんから成るコ ラーゲン (白の円柱)の接続部に結晶性の骨塩 (緑) が組み込まれています。

骨は基本的に優れた自然治癒能を有しています。しかし、あ る特定の大きさを超える欠損(「臨界サイズ欠損」)を来すと、 骨損傷の自然治癒は不可能になります。このような欠損は、 変形性関節症、骨嚢胞、骨腫瘍などのさまざまな疾患によっ て起こるほか、人工器官の緩みや骨切り術に伴う骨溶解な ど、手術療法が原因となって起こるおそれがあります。骨欠 損治療における一番良い方法は自己骨移植ですが、この方法 のデメリットは腸骨稜からの骨採取のほか、再手術を要する ことであり、これは重い併存疾患につながります<sup>1</sup>。入手で きる天然骨は限られており、多くの場合、広範な骨欠損の治 癒には不十分です。その一方で、大規模な骨バンクの維持に は長期間の組織保存の問題によって経費がかさみ、様々な込 み入った問題が伴います。この困難を克服するため、合成または部分合成の骨代用材料が数多く開発されています。骨組織の無機成分は大部分がHAで構成されているため、臨床で最も重要な材料はHAセラミックスです。使用されている材料としては、通常サンゴから得られるHA<sup>2</sup>、ガラス繊維強化HA<sup>3</sup>、ブラッシュ(Brushite)<sup>4</sup>、リン酸三カルシウム<sup>5</sup>、これらの材料の混合物(複合材料)<sup>6</sup>などが挙げられます。適正な骨結合には細孔系を相互接続する必要があるため、セラミックスの構造は極めて重要となります<sup>7</sup>。純粋なHAセラミックスでは再吸収や骨による置換(完全治癒)は起こりません。しかし、HAとリン酸三カルシウム(TCP)を材料とするバイオセラミックスでは高い吸収を示します<sup>8</sup>。

小さな欠損を治癒できる高い生理活性を有する骨代用材料は 数多くありますが、大きな損傷の治療に必要な骨ECMの形 成を促すことは未だ困難です。このECM再生、すなわち骨 誘導作用は、インプラントに間葉系幹細胞(MSCs)を導入す ると実現できます<sup>10</sup>。MSCsは腸骨稜から容易に採取できる ほか、複製能力が高く(最大40倍)、凍結保存が可能であり、 欠損部に新たな組織を構築できることから再生医療に適して います<sup>11</sup>。数多くの動物<sup>12,13</sup>やヒト<sup>14</sup>のin vivo試験では、 MSCsを導入したHAインプラントを用いると臨界サイズ欠 損の治療効果の向上が観察されています。しかし、信頼性の 高い再生骨医療のためには、HAインプラントの緩徐な分解 <sup>15</sup>、最適なMSCsとインプラント材料の選択のほか、外科手 術、患者の管理といったことが必要であるため、依然として 大きな課題となっています。

適切な条件下でさまざまなインプラント材料中の骨ECMの 形成をモニターするには定量的な解析ツールを開発する必要 があります。われわれは固体NMR分光法(磁場17.6T)を使っ て骨インプラント中のECMの形成を測定しました。具体的 には、MSCsから分化させた骨細胞をβ-TCP(Ca<sub>3</sub>(PO<sub>4</sub>)<sub>2</sub>)セラ ミックスに導入し、モデル動物であるウサギの大腿顆(膝関 節)の臨界サイズの欠損を治療しました<sup>16</sup>。骨髄穿刺液から MSCsを分離して培養して、骨細胞に分化させ、最大7日間 かけて多孔性のβ-TCPの円柱(6 mm × 10 mm)にこのMSCs を導入しました。ウサギ骨(大腿骨遠位顆の骨幹端)に6 mm の穴を開けて、この円柱を埋植したのち、3ヵ月後に屠殺し て骨インプラントを取り除き、解析を行いました。

通常、固体材料のNMRスペクトルは、幅の広い異方性の形 を示す特徴があります。しかし、マジック角回転(MAS: magic angle spinning)により、化学シフトに対するこの異方 性の寄与が平均化され、幅の狭いセンターバンドと多数のス ピニングサイドバンドにスペクトル強度が集約されます。そ して、NMRスペクトルのセンターバンドは、等方化学シフ トに応じて特徴的なシグナルに分離されます。このスペクト ルで観察される核種によっては、新たに形成された骨 ECM の有機成分と無機成分を検出できる可能性があります。図2 は、(a)ウサギの骨、(b)純粋なβ-TCP、(c)埋植3ヵ月後に 取り除いたウサギのインプラントの<sup>31</sup>P NMRスペクトルを示 しています。ウサギの骨とTCPのNMRスペクトルは、それ ぞれ1本と2本のラインで構成されています。ウサギのイン プラントの<sup>31</sup>P NMRシグナルは、ウサギ骨のバイオアパタイ トとβ-TCPマトリックス材料のシグナルとを重ね合わせたも

σ

のと説明できます。このスペクトルから、埋植3ヵ月後は(i) インプラント中に特徴的な炭酸バイオアパタイトミネラルが 合成されていること、(ii)β-TCPマトリックス材料は完全に は吸収されていないことが分かります。



図2. (a) ウサギの骨 (b) 純粋なβ-TCP、(c) 埋植3ヵ月後に取り除いたウ サギのインプラントの161.9 MHz固体<sup>31</sup>P MAS NMRスペクトル。スペク トル (a) と (b) を49:51の比で重ね合わせるとスペクトル (c) を再現す ることができます。このNMR実験は、4 mm MASローター中、37℃、 MAS周波数8 kHz で Hahn エコーパルスシークエンスを用いて行いまし た。1.9マイクロ秒90°パルス、緩和時間400秒でスペクトルを取得しま した。

以下の必要条件を満たしていれば、固体NMRの結果からイ ンプラント材料の成分を定量することができます。第一に、 シングルパルス励起実験と同様に、すべての<sup>31</sup>P核がいずれ も等しく分極されている必要があります。第二に、シグナル の化学シフトの異方性が類似している必要があり、そうでな い場合は全サイドバンドの強度を分析の対象とする必要があ ります。第三に、分子種のスピン格子緩和時間は実験の繰り 返し時間の1/5未満である必要があります。この条件下であ れば、インプラントのスペクトルが49:51の比でウサギの 骨とβ-TCPのスペクトルを重ねた形に変化すると思われま す。

骨インプラントの<sup>31</sup>P NMRスペクトルからアパタイトの寄与 を取り除くことができます。骨のアパタイトには水酸基が含 まれているため、交差分極(CP: cross-polarization)法で<sup>31</sup>P NMRスペクトルを取得することができます。この場合、最 初に1H核を分極させたのちに、この分極を<sup>31</sup>Pに移します。 1H核が存在しないため、β-TCPの<sup>31</sup>P CP MASスペクトルは 得られず、ウサギインプラントの<sup>31</sup>P CP MASスペクトルは1 本の線のみで構成されます。一方、そのまま分極させた同じ インプラントの<sup>31</sup>P NMRスペクトルでは、β-TCPのNMRスペ クトルとウサギの骨のNMRスペクトルが重なってしまいま す(**図3**)。上記の理由から、インプラント中に新たに形成さ れた無機物の骨ECMが、水酸基を含むバイオアパタイトで あることが実証されると考えられます。



図3. 埋植3 ヵ月後にウサギの大腿類から取り除いた b-TCPインプラント の161.9 MHz<sup>31</sup>P MAS NMRスペクトル。スペクトル(a) はシングル90° パルスを使ってそのまま分極させましたが、スペクトル(b) は、1408マ イクロ秒の接触時間で交差分極を行いました。いずれのスペクトルも 37℃で測定しました。

骨ECMの無機物の寄与に加えて、固体NMRでは<sup>13</sup>C NMRを 用いてインプラント中の有機成分を検出することもできま す。β-TCPには<sup>13</sup>Cがないため、<sup>13</sup>C NMRスペクトルが得ら れません(スペクトルは未掲載)。しかし、埋植3ヵ月後に 回収したウサキの骨のインプラントでは、タンパク質のアミ

ノ酸に由来する特徴的なシグナルを示す<sup>13</sup>C CP MAS NMRス ペクトルが得られました(図4)。比較のため、ウサギの骨の NMRスペクトルとI型コラーゲンのスペクトルを示します。 明らかに、3つのNMRスペクトルは互いによく対応してお り、インプラントの<sup>13</sup>C NMRスペクトルは明らかに有機物の コラーゲン成分によることを示しています。¹³C NMRスペク トルのシグナルの等方性化学シフトに基づいて、I型コラー ゲンの中で最も豊富なアミノ酸(グリシン、アラニン、プロ リン、ヒドロキシプロリン、グルタミン酸)を同定すること ができます。骨インプラントのNMRスペクトルがコラーゲ ンのものであることを裏づける極めて重要なピークは、71.1 ppmのHyPro Cyピークです。通常のアミノ酸の脂肪族<sup>13</sup>C NMRシグナルがこの位置に現れないため、インプラント中 の骨芽細胞がI型コラーゲンを合成したことがわかります。 さらに、インプラント、天然のウサギ骨、単離したI型コラー ゲンのスペクトルのピークは等方性化学シフトが同じであ り、等方性化学シフトはタンパク質の二次構造のきわめて高 感度なマーカーであることから、β-TCPインプラントに生じ たコラーゲンの構造には変化がないことが分かります。



図4. (a) 天然のウサギ骨、(b) 埋植3ヵ月後にウサギの大腿顆から取り除 いたβ-TCPインプラント、(c) 単離したI型コラーゲンの1Hデカップリン グ188.5 MHz<sup>13</sup>C CP MAS NMRスペクトル。スペクトルは37℃、MAS周 波数7 kHzで記録しました。ピークの同定は文献17,18から転載しました。

以上をまとめると、MSCsを導入した無機セラミックスのイ ンプラント中には水酸化アパタイトとコラーゲンが生成され たことがわかりました。インプラント内部の無機 ECMの形 成を<sup>31</sup>P NMRで分析すると、骨塩の形成を定量することがで きます。コラーゲンを<sup>13</sup>C NMRで分析すると、分子に固有の ピークとそのダイナミックな性質がわかりました。この結果 は、固体 NMRが骨 ECMの形成を定量的にモニターするうえ で有用な分析ツールであることを示唆しています。この方法 は、適切な足場材料の選択、その材料の表面改質、適切な増 殖条件など、骨組織工学が直面している課題を解決するのに 利用できます。現在、骨組織再生工学への要求は高まりつつ あり、固体 NMR分光法によってインプラント材料中の骨合 成を原子レベルで定量的に分析できれば、現在の手法にとっ て大きなメリットとなると考えられます。

#### 謝辞

本研究はドイツ学術振興会(HU 720/7-1)の支援を受けています。

#### References:

(1) Arrington, E. D.; Smith, W. J.; Chambers, H. G.; Bucknell, A. L.; Davino, N. A. *Clin.Orthop.Relat Res.* **1996**, 300. (2) Okumura, M.; Ohgushi, H.; Dohi, Y.; Katuda, T.; Tamai, S.; Koerten, H. K.; Tabata, S. *J.Biomed.Mater.Res.* **1997**, 37, 122. (3) Lopes, M. A.; Santos, J. D.; Monteiro, F. J.; Ohtsuki, C.; Osaka, A.; Kaneko, S.; Inoue, H. *J.Biomed.Mater.Res.* **2001**, *54*, 463. (4) Penel, G.; Leroy, N.; Van, L. P.; Flautre, B.; Hardouin, P.; Lemaitre, J.; Leroy, G. Bone. **1999**, *25*, 815. (5) Wang, J.; Chen, W.; Li, Y.; Fan, S.; Weng, J.; Zhang, X. *Biomaterials.* **1998**, *19*, 1387. (6) Beychok, S. *Science* **1966**, *154*, 1288. (7) Tamai, N.; Myoui, A.; Tomita, T.; Nakase, T.; Tanaka, J.; Ochi, T.; Yoshikawa, H. *J.Biomed. Mater.Res.* **2002**, *59*, 110. (8) Mastrogiacomo, M.; Muraglia, A.; Komlev, V.; Peyrin, F.; Rustichelli, F.; Crovace, A.; Cancedda, R. *Orthod.Craniofac.Res.* **2005**, *8*, 277. (9) Yoshikawa, H.; Myoui, A. *J.Artif.Organs.* **2005**, *8*, 131.

(10) Bruder, S. P.; Jaiswal, N.; Haynesworth, S. E. J. Cell Biochem. 1997, 64, 278. (11) Stenderup, K.; Justesen, J.; Clausen, C.; Kassem, M. Bone. 2003, 33, 919. (12) Bruder, S. P.; Kraus, K. H.; Goldberg, V. M.; Kadiyala, S. J.Bone Joint Surg.Am. 1998, 80, 985. (13) Petite, H.; Viateau, V.; Bensaid, W.; Meunier, A.; de, Pollack, C.; Bourguignon, M.; Oudina, K.; Sedel, L.; Guillemin, G. Nat. Biotechnol. 2000, 18, 959. (14) Quarto, R.; Mastrogiacomo, M.; Cancedda, R.; Kutepov, S. M.; Mukhachev, V.; Lavroukov, A.; Kon, E.; Marcacci, M. N.Engl.J.Med. 2001, 344, 385. (15) Mistry, A. S.; Mikos, A. G. Adv.Biochem. Eng Biotechnol. 2005, 94:1–22., 1. (16) Schulz, J.; Pretzsch, M.; Khalaf, I.; Deiwick, A.; Scheidt, H. A.; von Salis-Soglio, G.; Bader, A.; Huster, D. Calcif. Tissue Int. 2007, 80,275. (17) Aliev, A. E. Biopolymers 2005, 77, 230. (18) Forbes, J.; Bowers, J.; Shan, X.; Moran, L.; Oldfield, E.; Moscarello, M. A. J.Chem.Soc., Faraday Trans.1 1988, 84, 3821.

#### 生体適合性セラミックス

以下の表は、骨組織工学、歯科材料などの生体材料・生物医学研究に一般的に利用されているセラミック粒子材料の一部を示したものです。

セラミックスの全製品リストについては *sigma-aldrich.co.jp/aldrich/ceramic*をご覧ください。 金属ナノ粒子の全製品リストについては *sigma-aldrich.co.jp/aldrich/nano*をご覧ください。

| Name                                                                                              | Physical Form                  | Particle Size   | "Powder Purity/<br>Dispersion Concentration" | Prod. No.    |
|---------------------------------------------------------------------------------------------------|--------------------------------|-----------------|----------------------------------------------|--------------|
| Aluminum oxide                                                                                    |                                |                 |                                              |              |
| (alumina, $Al_2O_3$ )                                                                             | Powder                         | -100 mesh       | 99.9%                                        | 319767-25G   |
|                                                                                                   |                                |                 |                                              | 319767-100G  |
|                                                                                                   |                                | 10 μm (average) | 99.7%                                        | 265497-25G   |
|                                                                                                   |                                |                 |                                              | 265497-500G  |
|                                                                                                   |                                |                 |                                              | 265497-2.5KG |
|                                                                                                   | Nanopowder                     | < 50 nm (BET)   |                                              | 544833-10G   |
|                                                                                                   |                                |                 |                                              | 544833-50G   |
|                                                                                                   | Dispersion                     | < 50 nm (BET)   | 10 wt.% in H <sub>2</sub> O, pH 5–7          | 642991-100ML |
|                                                                                                   |                                |                 | 10 wt.% in isopropanol                       | 702129-100G  |
|                                                                                                   |                                |                 |                                              | 702129-500G  |
| Zirconium (IV) oxide                                                                              |                                |                 |                                              |              |
| (zirconia, ZrO <sub>2</sub> )                                                                     | Powder                         | 5 mm            | 99%                                          | 230693-100G  |
|                                                                                                   |                                |                 |                                              | 230693-500G  |
|                                                                                                   |                                |                 |                                              | 230693-2KG   |
|                                                                                                   | Nanopowder                     | < 100 nm (BET)  |                                              | 544760-5G    |
|                                                                                                   |                                |                 |                                              | 544760-25G   |
|                                                                                                   | Dispersion                     | < 100 nm (BET)  | 10 wt.% in H <sub>2</sub> O                  | 643025-100ML |
| Calcium Phosphate Ceramics                                                                        |                                |                 |                                              |              |
| Hydroxyapatite (Ca <sub>5</sub> (OH)(PO <sub>4</sub> ) <sub>3</sub> ), synthetic                  | Powder                         |                 | 99.999%                                      | 574791-5G    |
|                                                                                                   |                                |                 |                                              | 574791-15G   |
|                                                                                                   | Suspension                     |                 | ~ 25 wt.% in 1mM phosphate                   | H0252-10G    |
|                                                                                                   |                                |                 | butter, pH 6.8                               | H0252-25G    |
|                                                                                                   |                                |                 |                                              | H0252-65G    |
|                                                                                                   |                                |                 |                                              | H0252-250G   |
|                                                                                                   | Nanopowder                     | < 200 nm (BET)  | ≥97%                                         | 677418-5G    |
|                                                                                                   |                                |                 |                                              | 677418-10G   |
|                                                                                                   | Nanopowder,<br>5% silica doped | < 200 nm (BET)  |                                              | 693863-5G    |
|                                                                                                   | Dispersion                     | < 200 nm (BET)  | 10 wt.% in H <sub>2</sub> O                  | 702153-25ML  |
| Calcium phosphate (Ca2O7P2), amorphous                                                            | Nanopowder                     | < 100 nm (BET)  |                                              | 693871-5G    |
| $\beta$ -Tricalcium phosphate (Ca <sub>3</sub> O <sub>8</sub> P <sub>2</sub> )                    | Powder                         |                 | ≥98%                                         | 13204-10G    |
|                                                                                                   | (unsintered)                   |                 |                                              | 13204-100G   |
|                                                                                                   | Powder (sintered)              |                 | ≥98%                                         | 49963-10G    |
|                                                                                                   |                                |                 |                                              | 49963-100G   |
| Tricalcium phosphate hydrate<br>( $C\alpha_r$ (PO <sub>4</sub> ) <sub>2</sub> •×H <sub>2</sub> O) | Nanopowder                     | < 200 nm (BET)  |                                              | 693898-5G    |

26

### 生体適合性金属:チタン

チタン(Ti)は、生体材料研究に最も一般的に利用されている金属です。金属チタンは様々な整形外科インプラントに使用されていることから、骨組織工学実験では金属チタンのホイル、メッシュ、ワイヤが細胞培養担体としてよく使用されます。以下の表はチタン製品の一部を示したものです。全製品リストについては*sigma-aldrich.co.jp/aldrich/ceramic*をご覧ください。

| Physical Form | Dimensions         | Purity   | Quantity Equivalency  | Prod. No.    |
|---------------|--------------------|----------|-----------------------|--------------|
| Crystalline   |                    |          |                       |              |
|               | 5–10 mm (chunks)   | 99.99+ % | -                     | 305812-25G   |
|               |                    |          | -                     | 305812-100G  |
| Foil          |                    |          |                       |              |
|               | thickness 2.0 mm   | 99.7%    | 90 g = 100 x 100 mm   | 369489-90G   |
|               |                    |          | 200 g = 150 x 150 mm  | 369489-200G  |
|               | thickness 0.5 mm   | 99.99%   | 1.4 g = 25 x 25 mm    | 34805-1.4G   |
|               |                    |          | 5.6 g = 50 x 50 mm    | 34805-5.6G   |
|               | thickness 0.25 mm  | 99.99%   | 700 mg = 25 x 25 mm   | 267481-700MG |
|               | thickness 0.25 mm  | 99.7%    | 25.2 g = 150 x 150 mm | 267503-25.2G |
|               | thickness 0.127 mm | 99.99+%  | 1.5 g = 50 x 50 mm    | 460397-1.5G  |
|               | thickness 0.127 mm | 99.7%    | 13 g = 150 x 150 mm   | 348791-13G   |
|               | thickness 0.1 mm   | 99.99%   | 280 mg = 25 x 25 mm   | 348813-280MG |
|               |                    |          | 1.1 g = 50 x 50 mm    | 348813-1.1G  |
|               | thickness 0.25 mm  | 99.98%   | 280 mg = 50 x 50 mm   | 348848-280MG |
|               |                    |          | 1.1 g = 100 x 100 mm  | 348848-1.1G  |
| Wire          |                    |          |                       |              |
|               | diameter 2.0 mm    | 99.99%   | 1.4 g = 10 cm         | 348856-1.4G  |
|               |                    |          | 7 g = 50 cm           | 348856-7G    |
|               | diameter 1.0 mm    | 99.99%   | 3.5 g = 100 cm        | 266035-3.5G  |
|               | diameter 0.81 mm   | 99.7%    | 23 g = 10 m           | 267902-23G   |
|               | diameter 0.5 mm    | 99.99%   | 2.7 g = 300 cm        | 348864-2.7G  |
| Rod           |                    |          |                       |              |
|               | diameter 6.35 mm   | 99.99%   | 7.2 g = 50 mm         | 347132-7.2G  |
|               | diameter 6.35 mm   | 99.7%    | 25 g = 16.7 cm        | 266051-25G   |
| Sponge        |                    |          |                       |              |
|               | 2–12 mm            | 99.5%    | -                     | 268526-250G  |
|               |                    |          |                       | 268526-1KG   |

#### 日本国内での価格と在庫状況をご覧になるには ....

- 1) まず sigma-aldrich.com にアクセスして下さい。
- 2) 左上の「My Profile」をクリックして ① Web language = Japanese、② MSDS language = English、③ Country = Japan の3つを 選択し、Submit して下さい。
- 3) Top ページ等の右上にある Product Name or No. で検索して下さい。

# 材料科学研究でお困りのことはございませんか?

# Material Matters<sup>™</sup>

# Aldrich 材料科学分野の季刊テクニカルニュースレターです。

最新のトピックス、第一線研究者によるレビュー アプリケーションノートなどをご紹介

# 既刊特集内容(カッコ内は号数)

- ●ナノ材料の応用最前線(2-1)
- ●水素貯蔵材料(2-2)
- ●有機エレクトロニクス(2-3)
- ●先端金属および合金(2-4)
- 3 次元ナノおよびマイクロ構造(3-1)
- ●ナノ規模表面改質(3-2)
- ●生体材料(3-3)



# 定期的にお送りいたします! 新規登録募集中!

お申込は、以下の URL をご利用ください。http://www.sigma-aldrich.co.jp/aldrich/mscatalog または、sialjp@sial.com へ「Material Matters 定期送付希望」と明記の上ご連絡ください。

本カタログに掲載の製品及び情報は、2008年12月1日現在の内容であり、収載の品目、製品情報、価格等は予告なく変更される場合がございますので、予めご了承ください。製品のご注文に際し、価格、在庫は 弊社カスタマーサービスにお問合せください。また、弊社本国サイト(sigma-aldrich.com)上の製品検索でも価格と在庫状況をご確認いただけます。なお、掲載価格には消費税は含まれておりません。 弊社の試薬は試験研究用のみを目的として販売されています。医薬品、家庭用その他試験研究用以外の用途には使用できません。



# シグマ アルドリッチ ジャパン株式会社

〒140-0002 東京都品川区東品川2-2-24 天王洲セントラルタワー4F
 製品に関するお問い合わせは、弊社テクニカルサポートへ
 TEL:03-5796-7330 FAX:03-5796-7335
 E-mail: sialjpts@sial.com
 在庫照会・ご注文方法に関するお問い合わせは、弊社カスタマーサービスへ
 TEL:03-5796-7320 FAX:03-5796-7325

http://www.sigma-aldrich.com/japan

お問い合わせは下記代理店へ